Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2285. doi: 10.1107/S1600536811031084

4-(4-Bromo­phen­yl)-2,3,3a,4,5,11c-hexa­hydro­benzo[f]furo[3,2-c]quinoline

Nan Wu a, Rongli Zhang b, Xinnian Li a, Xin Xu a, Zhou Xu b,*
PMCID: PMC3200627  PMID: 22065710

Abstract

In the title compound, C21H18BrNO, both heterocyclic rings, viz. the hydro­pyridine ring and the adjacent hydro­furan ring, adopt envelope conformations. These two heterocycles make a dihedral angle of 37.3 (1)°. The dihedral angle between the hydro­pyridine and benzene rings is 69.6 (1)°. In the crystal, adjacent mol­ecules are linked by pairs of inter­molecular C—H⋯O hydrogen bonds, forming centrosymmetric dimers.

Related literature

For the biological properties of quinoline derivatives, see: Nesterova et al. (1995); Yamada et al. (1992); Faber et al. (1984); Johnson et al. (1989). For related structures, see: Ramesh et al. (2008); Zhao & Teng (2008); Bai et al. (2009); Du et al. (2010); Wang et al. (2010).graphic file with name e-67-o2285-scheme1.jpg

Experimental

Crystal data

  • C21H18BrNO

  • M r = 380.27

  • Triclinic, Inline graphic

  • a = 9.4019 (2) Å

  • b = 9.6025 (2) Å

  • c = 10.4660 (2) Å

  • α = 103.888 (1)°

  • β = 114.075 (1)°

  • γ = 92.469 (1)°

  • V = 826.81 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 296 K

  • 0.20 × 0.09 × 0.04 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.793, T max = 0.899

  • 10901 measured reflections

  • 2921 independent reflections

  • 2301 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.076

  • S = 1.04

  • 2921 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031084/zb2015sup1.cif

e-67-o2285-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031084/zb2015Isup2.hkl

e-67-o2285-Isup2.hkl (143.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031084/zb2015Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.69 3.462 (3) 141

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Special Presidential Foundation of Xuzhou Medical College (2010KJZ24) for financial support.

supplementary crystallographic information

Comment

Quinoline derivatives has been extensively studied due to its varies of biological properties, such as psychotropic activity (Nesterova, et al., 1995), anti-allergic (Yamada et al., 1992) and anti-inflammatory activity (Faber et al., 1984 and Johnson et al., 1989). The title compound (Fig. 1), may be used as a new precursor for obtaining bioactive molecules. Herein, we report the crystal structure of the title compound, (I).

In the crystal structure of (I), the hydropyridine ring of the furoquinoline moiety adopts an envelope conformation (Fig. 1). The atom C1 deviates from the plane defined by the atoms C2/C5/C6/C15/N1 by 0.646 (3) Å. This conformation is different from those reported in other hydropyridine derivatives (For related structrues, see Ramesh, et al., 2008; Zhao & Teng, 2008; Bai et al., 2009; Du, et al., 2010). In the adjacent hydrofuran ring, the atoms C2—C4 and O1 are coplanar, while the atom C5 deviates from the plane by 0.522 (3) Å. This data indicates that the above hydrofuran ring also adopts an envelope conformation. These two heterocycles make a dihedral angle of 37.3 (1)°. The basal plane of the hydropyridine ring is nearly coplanar to the naphthalene ring C6—C15, forming a dihedral angle of 6.0 (1)°. The dihedral angle between the phenyl and the hydropyridine ring is 69.6 (1)°. The hydrogen bond of C9—H9···O1 links the adjacent moleclues forming dimmers along a axis (Figure 2). This hydrogen bonding pattern is same with the one reported in literature (Wang et al., 2010).

Experimental

The title compound, (I), was prepared by the reaction of 4-bromobenzaldehyde (0.361 g, 2.0 mmol), naphthalen-2-amine (0.286 g, 2.0 mmol), 2,3-dihydrofuran (0.252 g, 3.0 mmol), I2 (0.026 g, 0.1 mmol) and THF (10 ml) for 18 h (yield 87%, mp. 523–525 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a DMF solution.

Refinement

The H atoms were calculated geometrically and refined as riding, with C—H = 0.93–0.98 Å, except for H1, and with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure drawing shows 30% probability of displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The molecular packing diagram of (I). Dashed lines indicate hydrogen bonds of type C9—H9···O1 which links the adjacent molecules forming dimmers along a.

Crystal data

C21H18BrNO Z = 2
Mr = 380.27 F(000) = 388
Triclinic, P1 Dx = 1.527 Mg m3
Hall symbol: -P 1 Melting point = 523–525 K
a = 9.4019 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.6025 (2) Å Cell parameters from 2885 reflections
c = 10.4660 (2) Å θ = 2.2–22.9°
α = 103.888 (1)° µ = 2.49 mm1
β = 114.075 (1)° T = 296 K
γ = 92.469 (1)° Block, colourless
V = 826.81 (3) Å3 0.20 × 0.09 × 0.04 mm

Data collection

Bruker APEXII area-detector diffractometer 2921 independent reflections
Radiation source: fine-focus sealed tube 2301 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −11→11
Tmin = 0.793, Tmax = 0.899 k = −11→11
10901 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.242P] where P = (Fo2 + 2Fc2)/3
2921 reflections (Δ/σ)max = 0.001
221 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.51042 (4) 0.37481 (4) 0.64000 (4) 0.05334 (14)
O1 0.7657 (2) 0.0345 (2) 0.8561 (2) 0.0463 (5)
C16 1.1935 (3) 0.2498 (3) 0.8548 (3) 0.0360 (6)
C19 1.3806 (3) 0.3222 (3) 0.7264 (3) 0.0364 (6)
N1 1.1406 (3) 0.3070 (3) 1.0684 (3) 0.0457 (7)
C6 0.8940 (3) 0.2371 (3) 1.0725 (3) 0.0335 (6)
C1 1.0888 (3) 0.2098 (3) 0.9222 (3) 0.0387 (7)
H1B 1.0959 0.1099 0.9283 0.046*
C21 1.2412 (3) 0.1435 (3) 0.7724 (3) 0.0430 (7)
H21 1.2100 0.0462 0.7605 0.052*
C12 0.8804 (3) 0.2858 (3) 1.3089 (3) 0.0387 (7)
C20 1.3343 (3) 0.1788 (3) 0.7073 (3) 0.0446 (7)
H20 1.3647 0.1063 0.6515 0.054*
C15 1.0518 (3) 0.2965 (3) 1.1442 (3) 0.0377 (7)
C7 0.8052 (3) 0.2325 (3) 1.1546 (3) 0.0330 (6)
C5 0.8148 (3) 0.1891 (3) 0.9095 (3) 0.0350 (6)
H5 0.7211 0.2361 0.8765 0.042*
C2 0.9162 (3) 0.2214 (3) 0.8341 (3) 0.0400 (7)
H2 0.9075 0.3181 0.8190 0.048*
C17 1.2421 (3) 0.3929 (3) 0.8702 (3) 0.0480 (8)
H17 1.2106 0.4661 0.9242 0.058*
C8 0.6415 (3) 0.1764 (3) 1.0879 (3) 0.0383 (7)
H8 0.5893 0.1401 0.9869 0.046*
C9 0.5593 (3) 0.1746 (3) 1.1694 (3) 0.0434 (7)
H9 0.4519 0.1385 1.1231 0.052*
C11 0.7913 (4) 0.2808 (3) 1.3891 (3) 0.0478 (8)
H11 0.8407 0.3153 1.4903 0.057*
C10 0.6344 (4) 0.2263 (3) 1.3208 (3) 0.0491 (8)
H10 0.5776 0.2237 1.3753 0.059*
C14 1.1242 (3) 0.3524 (3) 1.2979 (3) 0.0473 (8)
H14 1.2300 0.3943 1.3452 0.057*
C18 1.3365 (3) 0.4302 (3) 0.8073 (3) 0.0453 (7)
H18 1.3695 0.5273 0.8199 0.054*
C13 1.0424 (4) 0.3462 (3) 1.3777 (3) 0.0471 (8)
H13 1.0932 0.3820 1.4788 0.057*
C3 0.8387 (4) 0.1035 (4) 0.6873 (3) 0.0576 (9)
H3A 0.7779 0.1450 0.6097 0.069*
H3B 0.9180 0.0569 0.6639 0.069*
C4 0.7334 (4) −0.0034 (4) 0.7062 (3) 0.0610 (9)
H4A 0.6236 0.0002 0.6472 0.073*
H4B 0.7538 −0.1011 0.6758 0.073*
H1A 1.234 (4) 0.323 (3) 1.114 (3) 0.052 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0485 (2) 0.0682 (2) 0.0570 (2) 0.00705 (16) 0.03258 (16) 0.02427 (18)
O1 0.0560 (12) 0.0410 (12) 0.0405 (12) −0.0063 (10) 0.0247 (10) 0.0045 (10)
N1 0.0306 (14) 0.0645 (18) 0.0388 (15) −0.0024 (13) 0.0144 (12) 0.0120 (14)
C1 0.0387 (16) 0.0397 (16) 0.0401 (17) 0.0031 (13) 0.0190 (14) 0.0126 (14)
C2 0.0389 (16) 0.0452 (17) 0.0399 (17) 0.0026 (13) 0.0179 (13) 0.0182 (15)
C3 0.0471 (18) 0.083 (3) 0.0358 (18) −0.0093 (17) 0.0177 (15) 0.0092 (18)
C4 0.082 (2) 0.053 (2) 0.046 (2) −0.0024 (18) 0.0342 (18) 0.0023 (17)
C5 0.0334 (15) 0.0381 (16) 0.0351 (16) 0.0025 (12) 0.0156 (12) 0.0122 (14)
C6 0.0351 (15) 0.0335 (15) 0.0318 (15) 0.0037 (12) 0.0141 (12) 0.0099 (13)
C7 0.0399 (15) 0.0264 (14) 0.0353 (15) 0.0054 (12) 0.0186 (13) 0.0089 (13)
C8 0.0417 (16) 0.0342 (16) 0.0405 (17) 0.0027 (13) 0.0202 (13) 0.0093 (14)
C9 0.0457 (17) 0.0352 (16) 0.057 (2) 0.0028 (13) 0.0314 (16) 0.0097 (15)
C10 0.066 (2) 0.0423 (18) 0.055 (2) 0.0022 (16) 0.0432 (18) 0.0111 (16)
C11 0.068 (2) 0.0406 (18) 0.0398 (18) 0.0021 (16) 0.0305 (17) 0.0085 (15)
C12 0.0494 (17) 0.0340 (16) 0.0348 (16) 0.0040 (13) 0.0200 (14) 0.0105 (14)
C13 0.0525 (19) 0.0485 (19) 0.0331 (16) 0.0013 (15) 0.0138 (15) 0.0084 (15)
C14 0.0383 (17) 0.0534 (19) 0.0400 (18) −0.0042 (14) 0.0112 (14) 0.0074 (16)
C15 0.0348 (15) 0.0414 (17) 0.0380 (16) 0.0038 (13) 0.0162 (13) 0.0126 (14)
C16 0.0328 (15) 0.0365 (16) 0.0410 (17) 0.0043 (12) 0.0169 (13) 0.0134 (14)
C17 0.059 (2) 0.0356 (17) 0.063 (2) 0.0094 (15) 0.0400 (17) 0.0116 (16)
C18 0.0505 (18) 0.0342 (16) 0.059 (2) 0.0015 (14) 0.0324 (16) 0.0116 (16)
C19 0.0318 (14) 0.0437 (17) 0.0367 (16) 0.0046 (13) 0.0162 (13) 0.0141 (14)
C20 0.0472 (17) 0.0413 (18) 0.0517 (19) 0.0104 (14) 0.0297 (15) 0.0087 (15)
C21 0.0442 (17) 0.0337 (16) 0.0562 (19) 0.0061 (13) 0.0255 (15) 0.0146 (15)

Geometric parameters (Å, °)

Br1—C19 1.905 (3) C7—C8 1.420 (4)
O1—C4 1.420 (3) C5—C2 1.527 (3)
O1—C5 1.436 (3) C5—H5 0.9800
C16—C17 1.379 (4) C2—C3 1.534 (4)
C16—C21 1.386 (4) C2—H2 0.9800
C16—C1 1.510 (3) C17—C18 1.383 (4)
C19—C18 1.366 (4) C17—H17 0.9300
C19—C20 1.368 (4) C8—C9 1.367 (4)
N1—C15 1.381 (3) C8—H8 0.9300
N1—C1 1.454 (4) C9—C10 1.391 (4)
N1—H1A 0.80 (3) C9—H9 0.9300
C6—C15 1.379 (4) C11—C10 1.362 (4)
C6—C7 1.428 (3) C11—H11 0.9300
C6—C5 1.494 (4) C10—H10 0.9300
C1—C2 1.529 (4) C14—C13 1.355 (4)
C1—H1B 0.9800 C14—H14 0.9300
C21—C20 1.384 (4) C18—H18 0.9300
C21—H21 0.9300 C13—H13 0.9300
C12—C11 1.414 (4) C3—C4 1.497 (4)
C12—C13 1.415 (4) C3—H3A 0.9700
C12—C7 1.417 (4) C3—H3B 0.9700
C20—H20 0.9300 C4—H4A 0.9700
C15—C14 1.415 (4) C4—H4B 0.9700
C4—O1—C5 105.9 (2) C5—C2—C3 102.0 (2)
C17—C16—C21 117.7 (2) C1—C2—C3 112.5 (2)
C17—C16—C1 121.3 (2) C5—C2—H2 110.3
C21—C16—C1 121.0 (2) C1—C2—H2 110.3
C18—C19—C20 121.5 (2) C3—C2—H2 110.3
C18—C19—Br1 118.6 (2) C16—C17—C18 121.6 (3)
C20—C19—Br1 119.9 (2) C16—C17—H17 119.2
C15—N1—C1 118.9 (2) C18—C17—H17 119.2
C15—N1—H1A 117 (2) C9—C8—C7 121.3 (3)
C1—N1—H1A 113 (2) C9—C8—H8 119.4
C15—C6—C7 119.5 (2) C7—C8—H8 119.4
C15—C6—C5 119.7 (2) C8—C9—C10 120.7 (3)
C7—C6—C5 120.6 (2) C8—C9—H9 119.6
N1—C1—C16 109.9 (2) C10—C9—H9 119.6
N1—C1—C2 107.6 (2) C10—C11—C12 121.2 (3)
C16—C1—C2 112.3 (2) C10—C11—H11 119.4
N1—C1—H1B 109.0 C12—C11—H11 119.4
C16—C1—H1B 109.0 C11—C10—C9 119.9 (3)
C2—C1—H1B 109.0 C11—C10—H10 120.1
C20—C21—C16 121.5 (3) C9—C10—H10 120.1
C20—C21—H21 119.3 C13—C14—C15 121.3 (3)
C16—C21—H21 119.3 C13—C14—H14 119.3
C11—C12—C13 122.0 (3) C15—C14—H14 119.3
C11—C12—C7 119.4 (3) C19—C18—C17 118.9 (3)
C13—C12—C7 118.6 (3) C19—C18—H18 120.5
C19—C20—C21 118.8 (3) C17—C18—H18 120.5
C19—C20—H20 120.6 C14—C13—C12 120.7 (3)
C21—C20—H20 120.6 C14—C13—H13 119.6
C6—C15—N1 121.3 (3) C12—C13—H13 119.6
C6—C15—C14 119.9 (3) C4—C3—C2 105.5 (2)
N1—C15—C14 118.8 (2) C4—C3—H3A 110.6
C12—C7—C8 117.5 (2) C2—C3—H3A 110.6
C12—C7—C6 119.9 (2) C4—C3—H3B 110.6
C8—C7—C6 122.6 (2) C2—C3—H3B 110.6
O1—C5—C6 110.8 (2) H3A—C3—H3B 108.8
O1—C5—C2 104.9 (2) O1—C4—C3 107.6 (3)
C6—C5—C2 115.6 (2) O1—C4—H4A 110.2
O1—C5—H5 108.4 C3—C4—H4A 110.2
C6—C5—H5 108.4 O1—C4—H4B 110.2
C2—C5—H5 108.4 C3—C4—H4B 110.2
C5—C2—C1 111.1 (2) H4A—C4—H4B 108.5
C15—N1—C1—C16 174.5 (2) C7—C6—C5—C2 170.7 (2)
C15—N1—C1—C2 52.0 (3) O1—C5—C2—C1 −88.2 (3)
C17—C16—C1—N1 −41.8 (3) C6—C5—C2—C1 34.2 (3)
C21—C16—C1—N1 139.6 (3) O1—C5—C2—C3 31.8 (3)
C17—C16—C1—C2 77.9 (3) C6—C5—C2—C3 154.2 (2)
C21—C16—C1—C2 −100.6 (3) N1—C1—C2—C5 −55.6 (3)
C17—C16—C21—C20 −0.1 (4) C16—C1—C2—C5 −176.6 (2)
C1—C16—C21—C20 178.5 (3) N1—C1—C2—C3 −169.2 (2)
C18—C19—C20—C21 −0.3 (4) C16—C1—C2—C3 69.7 (3)
Br1—C19—C20—C21 179.4 (2) C21—C16—C17—C18 −0.6 (4)
C16—C21—C20—C19 0.6 (4) C1—C16—C17—C18 −179.2 (3)
C7—C6—C15—N1 −178.0 (2) C12—C7—C8—C9 0.4 (4)
C5—C6—C15—N1 −2.8 (4) C6—C7—C8—C9 −179.4 (2)
C7—C6—C15—C14 −0.1 (4) C7—C8—C9—C10 −0.9 (4)
C5—C6—C15—C14 175.1 (2) C13—C12—C11—C10 178.0 (3)
C1—N1—C15—C6 −23.0 (4) C7—C12—C11—C10 −0.3 (4)
C1—N1—C15—C14 159.1 (3) C12—C11—C10—C9 −0.1 (4)
C11—C12—C7—C8 0.2 (4) C8—C9—C10—C11 0.7 (4)
C13—C12—C7—C8 −178.2 (2) C6—C15—C14—C13 1.5 (4)
C11—C12—C7—C6 −180.0 (2) N1—C15—C14—C13 179.4 (3)
C13—C12—C7—C6 1.6 (4) C20—C19—C18—C17 −0.4 (4)
C15—C6—C7—C12 −1.4 (4) Br1—C19—C18—C17 179.9 (2)
C5—C6—C7—C12 −176.5 (2) C16—C17—C18—C19 0.9 (4)
C15—C6—C7—C8 178.4 (2) C15—C14—C13—C12 −1.3 (4)
C5—C6—C7—C8 3.3 (4) C11—C12—C13—C14 −178.6 (3)
C4—O1—C5—C6 −164.3 (2) C7—C12—C13—C14 −0.3 (4)
C4—O1—C5—C2 −38.9 (3) C5—C2—C3—C4 −13.9 (3)
C15—C6—C5—O1 114.7 (3) C1—C2—C3—C4 105.2 (3)
C7—C6—C5—O1 −70.2 (3) C5—O1—C4—C3 29.8 (3)
C15—C6—C5—C2 −4.4 (4) C2—C3—C4—O1 −8.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9···O1i 0.93 2.69 3.462 (3) 141.

Symmetry codes: (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2015).

References

  1. Bai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799. [DOI] [PMC free article] [PubMed]
  2. Bruker (2001). SAINT, SADABS and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Du, B.-X., Zhou, J., Li, Y.-L. & Wang, X.-S. (2010). Acta Cryst. E66, o1622. [DOI] [PMC free article] [PubMed]
  4. Faber, K., Stueckler, H. & Kappe, T. (1984). J. Heterocyl. Chem. 21, 1177–1178.
  5. Johnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem. 32, 1942–1949. [DOI] [PubMed]
  6. Nesterova, I., Alekseeva, L. M., Andreeva, L. M., Andreeva, N. I., Golovira, S. M. & Granic, V. G. (1995). Khim. Farm. Zh. 29, 31–34.
  7. Ramesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1891. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, X.-S., Zhou, J., Yin, M.-Y., Yang, K. & Tu, S.-J. (2010). J. Comb. Chem. 12, 266–269. [DOI] [PubMed]
  10. Yamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol. 44, 1211–1213. [DOI] [PubMed]
  11. Zhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772–o1773. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031084/zb2015sup1.cif

e-67-o2285-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031084/zb2015Isup2.hkl

e-67-o2285-Isup2.hkl (143.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031084/zb2015Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES