Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2278. doi: 10.1107/S1600536811031333

N,N′-Bis(3-chloro­phen­yl)malonamide

Vinola Z Rodrigues a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3200632  PMID: 22058926

Abstract

The asymmetric unit of the title compound, C15H12Cl2N2O2, contains two independent mol­ecules. In both independent mol­ecules, the N—H bond in one of the amide fragments is anti to the meta-chloro group of the adjacent benzene ring and that in the other amide group is syn to the other meta-chloro group. Furthermore, in both mol­ecules, each amide group is almost coplanar with the adjacent phenyl ring, making dihedral angles of 10.5 (2) and 8.7 (2)° in one molecule and 9.0 (2) and 9.6 (2)° in the other. The planes of the amide groups are inclined at dihedral angles of 83.4 (1) and 87.4 (1)° in the two mol­ecules. In the crystal, mol­ecules are linked into a chain by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004); Gowda et al. (2010); Saraswathi et al. (2011), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007) and on N-chloro-aryl­sulfonamides, see: Gowda & Kumar (2003).graphic file with name e-67-o2278-scheme1.jpg

Experimental

Crystal data

  • C15H12Cl2N2O2

  • M r = 323.17

  • Monoclinic, Inline graphic

  • a = 10.9209 (8) Å

  • b = 16.416 (1) Å

  • c = 17.490 (1) Å

  • β = 105.260 (6)°

  • V = 3025.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.48 × 0.28 × 0.24 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.819, T max = 0.903

  • 12003 measured reflections

  • 5164 independent reflections

  • 2767 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.114

  • S = 0.96

  • 5164 reflections

  • 391 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031333/nc2242sup1.cif

e-67-o2278-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031333/nc2242Isup2.hkl

e-67-o2278-Isup2.hkl (252.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031333/nc2242Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.84 (2) 2.11 (2) 2.950 (3) 176 (3)
N2—H2N⋯O4i 0.87 (2) 2.11 (2) 2.961 (3) 169 (3)
N3—H3N⋯O1ii 0.85 (2) 2.09 (2) 2.939 (3) 173 (2)
N4—H4N⋯O2 0.85 (2) 2.12 (2) 2.947 (3) 168 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for award of an RFSMS research fellowship.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As a part of studying the substituent effects on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004, Gowda et al., 2010, Saraswathi et al., 2011); N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-chloro-arylsulfonamides (Gowda & Kumar, 2003), in the present work, the structure of N,N-bis(3-chlorophenyl)-malonamide (I) has been determined (Fig.1). The asymmetric unit of (I) contains two independent molecules. The conformations of all the N—H, C=O and C—H bonds in the central amide and aliphatic segments are anti to their adjacent bonds. Further, in both of the independent molecules, the N—H bonds in the amide fragments are anti to the meta-chloro groups in one of the adjacent benzene rings and syn to the meta-chloro group in the other, in contrast to the syn conformations of the N—H bonds with respect to the meta-methyl groups in the adjacent benzene rings of N,N-bis(3-methylphenyl)-malonamide (II)(Gowda et al., 2010) and anti conformations of the N—H bonds with respect to the meta-chloro groups in N,N- bis(3-chlorophenyl)-succinamide (III) (Saraswathi et al., 2011).

In the geometry of the molecule, each amide group is almost coplanar with the adjacent phenyl rings, as indicated by the dihedral angles of 10.5 (2)°, 8.7 (2)° (molecule 1) and 9.0 (2)°, 9.6 (2)° (molecule 2), compared to the value of 9.2 (2)° in (II). The planes of amide groups are inclined at angles of 83.4 (1)° (molecule 1) and 87.4 (1)° (molecule 2), in contrast to the value of 68.5 (1)° in (II). The phenyl rings of the two molecules make a dihedral angle of 21.5 (1)°.

In the crystal, the molecules are linked into chains by intermolecular N–H···O hydrogen bonding as shown in Fig. 2 (Table 1) .

Experimental

Malonic acid (0.3 mol) in dichloromethane (30 ml) was treated with m-chloroaniline (0.6 mol) in dichloromethane (30 ml), dropwise with stirring. The resulting mixture was stirred for 3 hrs and kept aside for 12 hrs for the completion of reaction and evaporation of the solvent, dichloromethane. The product obtained was added to crushed ice to obtain the precipitate. The latter was thoroughly washed with water and then with saturated sodium bicarbonate solution and washed again with water. It was then given a wash with 2 N HCl. It was again washed with water, filtered, dried and recrystallized to the constant melting point from ethanol.

Prism like colorless single crystals of the title compound used in X-ray diffraction studies were obtained by a slow evaporation of its ehanolic solution at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and the methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal structure of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C15H12Cl2N2O2 F(000) = 1328
Mr = 323.17 Dx = 1.419 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2892 reflections
a = 10.9209 (8) Å θ = 2.7–27.8°
b = 16.416 (1) Å µ = 0.43 mm1
c = 17.490 (1) Å T = 293 K
β = 105.260 (6)° Prism, colourless
V = 3025.0 (3) Å3 0.48 × 0.28 × 0.24 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 5164 independent reflections
Radiation source: fine-focus sealed tube 2767 reflections with I > 2σ(I)
graphite Rint = 0.027
Rotation method data acquisition using ω and φ scans θmax = 25.2°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −13→12
Tmin = 0.819, Tmax = 0.903 k = −19→18
12003 measured reflections l = −20→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0536P)2] where P = (Fo2 + 2Fc2)/3
5164 reflections (Δ/σ)max < 0.001
391 parameters Δρmax = 0.25 e Å3
4 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.08136 (11) 0.24962 (7) −0.09253 (6) 0.1097 (4)
Cl2 1.03780 (9) 0.56633 (6) 0.20849 (5) 0.0876 (3)
O1 0.42401 (19) 0.33751 (13) 0.14639 (11) 0.0623 (6)
O2 0.6972 (2) 0.21642 (13) 0.22591 (12) 0.0640 (6)
N1 0.3525 (2) 0.22476 (16) 0.19545 (14) 0.0479 (7)
H1N 0.375 (3) 0.1947 (15) 0.2358 (12) 0.058*
N2 0.7334 (2) 0.35055 (16) 0.25539 (13) 0.0464 (6)
H2N 0.702 (2) 0.3931 (13) 0.2729 (15) 0.056*
C1 0.2485 (3) 0.20088 (18) 0.13298 (19) 0.0495 (8)
C2 0.2199 (3) 0.23552 (19) 0.05850 (18) 0.0541 (8)
H2 0.2692 0.2777 0.0472 0.065*
C3 0.1173 (3) 0.2066 (2) 0.0013 (2) 0.0684 (10)
C4 0.0426 (3) 0.1446 (3) 0.0162 (3) 0.0912 (13)
H4 −0.0271 0.1261 −0.0229 0.109*
C5 0.0740 (4) 0.1104 (3) 0.0908 (3) 0.1005 (14)
H5 0.0257 0.0675 0.1018 0.121*
C6 0.1748 (3) 0.1384 (2) 0.1490 (2) 0.0751 (10)
H6 0.1935 0.1154 0.1993 0.090*
C7 0.4340 (3) 0.28635 (19) 0.19877 (17) 0.0454 (8)
C8 0.5425 (3) 0.28865 (18) 0.27290 (15) 0.0506 (8)
H8A 0.5345 0.2441 0.3077 0.061*
H8B 0.5408 0.3394 0.3009 0.061*
C9 0.6661 (3) 0.2813 (2) 0.24981 (15) 0.0459 (8)
C10 0.8452 (3) 0.3654 (2) 0.23050 (15) 0.0439 (7)
C11 0.8857 (3) 0.4459 (2) 0.23304 (15) 0.0504 (8)
H11 0.8418 0.4864 0.2521 0.060*
C12 0.9902 (3) 0.4656 (2) 0.20745 (16) 0.0574 (9)
C13 1.0551 (3) 0.4076 (3) 0.1792 (2) 0.0786 (11)
H13 1.1260 0.4212 0.1618 0.094*
C14 1.0143 (4) 0.3290 (3) 0.1768 (2) 0.0896 (12)
H14 1.0584 0.2893 0.1570 0.108*
C15 0.9102 (3) 0.3058 (2) 0.20266 (19) 0.0660 (9)
H15 0.8852 0.2515 0.2012 0.079*
Cl3 0.23604 (9) −0.20233 (6) 0.53548 (6) 0.0919 (4)
Cl4 0.20833 (9) 0.00640 (8) −0.10657 (5) 0.1024 (4)
O3 0.4176 (2) 0.11744 (14) 0.33566 (12) 0.0667 (6)
O4 0.4030 (2) −0.01860 (13) 0.18439 (11) 0.0593 (6)
N3 0.4492 (2) −0.01203 (14) 0.38243 (12) 0.0413 (6)
H3N 0.488 (2) −0.0561 (13) 0.3785 (14) 0.050*
N4 0.5293 (2) 0.08006 (14) 0.15599 (13) 0.0438 (6)
H4N 0.586 (2) 0.1142 (14) 0.1768 (14) 0.053*
C16 0.3616 (3) −0.01776 (19) 0.42933 (13) 0.0394 (7)
C17 0.3449 (3) −0.09478 (19) 0.45764 (15) 0.0465 (8)
H17 0.3916 −0.1387 0.4470 0.056*
C18 0.2586 (3) −0.1056 (2) 0.50165 (16) 0.0546 (8)
C19 0.1891 (3) −0.0411 (2) 0.51849 (17) 0.0622 (10)
H19 0.1308 −0.0489 0.5481 0.075*
C20 0.2076 (3) 0.0342 (2) 0.49082 (17) 0.0622 (9)
H20 0.1612 0.0780 0.5022 0.075*
C21 0.2933 (3) 0.04743 (19) 0.44636 (15) 0.0502 (8)
H21 0.3049 0.0994 0.4282 0.060*
C22 0.4710 (3) 0.0515 (2) 0.33970 (15) 0.0460 (8)
C23 0.5658 (3) 0.03563 (18) 0.29160 (14) 0.0490 (8)
H23A 0.6115 −0.0146 0.3087 0.059*
H23B 0.6266 0.0799 0.2987 0.059*
C24 0.4916 (3) 0.02930 (19) 0.20509 (16) 0.0448 (7)
C25 0.4727 (3) 0.09431 (18) 0.07396 (15) 0.0429 (7)
C26 0.3772 (3) 0.04626 (19) 0.02923 (17) 0.0506 (8)
H26 0.3471 0.0016 0.0515 0.061*
C27 0.3274 (3) 0.0660 (2) −0.04923 (18) 0.0600 (9)
C28 0.3689 (3) 0.1322 (3) −0.08368 (19) 0.0762 (11)
H28 0.3323 0.1451 −0.1365 0.091*
C29 0.4653 (4) 0.1787 (2) −0.03847 (19) 0.0762 (11)
H29 0.4949 0.2235 −0.0609 0.091*
C30 0.5188 (3) 0.15961 (19) 0.04018 (17) 0.0575 (9)
H30 0.5856 0.1906 0.0702 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1013 (8) 0.1303 (10) 0.0822 (7) 0.0026 (7) −0.0028 (6) 0.0018 (6)
Cl2 0.0953 (7) 0.0791 (8) 0.0886 (7) −0.0246 (6) 0.0245 (5) 0.0113 (5)
O1 0.0801 (16) 0.0477 (15) 0.0581 (13) −0.0170 (12) 0.0161 (11) 0.0143 (11)
O2 0.0779 (16) 0.0394 (15) 0.0806 (15) −0.0013 (12) 0.0314 (12) −0.0179 (12)
N1 0.0533 (17) 0.0379 (19) 0.0581 (17) 0.0049 (14) 0.0244 (14) 0.0116 (13)
N2 0.0567 (17) 0.0329 (19) 0.0520 (15) 0.0060 (14) 0.0183 (12) −0.0084 (12)
C1 0.0450 (19) 0.033 (2) 0.076 (2) 0.0052 (16) 0.0267 (17) 0.0051 (17)
C2 0.049 (2) 0.045 (2) 0.072 (2) −0.0011 (17) 0.0235 (16) −0.0012 (18)
C3 0.057 (2) 0.059 (3) 0.084 (3) 0.006 (2) 0.0103 (19) −0.004 (2)
C4 0.053 (2) 0.074 (3) 0.134 (4) −0.014 (2) 0.002 (2) −0.015 (3)
C5 0.070 (3) 0.074 (3) 0.155 (4) −0.022 (2) 0.025 (3) 0.024 (3)
C6 0.059 (2) 0.056 (3) 0.111 (3) −0.011 (2) 0.024 (2) 0.021 (2)
C7 0.055 (2) 0.033 (2) 0.0572 (19) 0.0008 (17) 0.0297 (16) 0.0018 (16)
C8 0.070 (2) 0.040 (2) 0.0474 (17) −0.0036 (17) 0.0264 (15) −0.0015 (15)
C9 0.059 (2) 0.040 (2) 0.0379 (16) 0.0043 (19) 0.0130 (14) −0.0023 (15)
C10 0.0422 (18) 0.046 (2) 0.0416 (16) 0.0050 (17) 0.0085 (13) −0.0045 (15)
C11 0.055 (2) 0.049 (2) 0.0460 (17) 0.0058 (18) 0.0122 (14) −0.0066 (15)
C12 0.057 (2) 0.063 (3) 0.0501 (18) −0.0036 (19) 0.0098 (15) 0.0052 (17)
C13 0.066 (3) 0.086 (3) 0.093 (3) −0.003 (3) 0.037 (2) −0.001 (2)
C14 0.076 (3) 0.082 (4) 0.129 (3) 0.019 (3) 0.058 (2) −0.013 (3)
C15 0.067 (2) 0.046 (2) 0.091 (2) 0.0126 (19) 0.0323 (19) −0.0072 (19)
Cl3 0.0972 (8) 0.0803 (8) 0.1077 (7) −0.0137 (6) 0.0441 (6) 0.0323 (6)
Cl4 0.0661 (6) 0.1521 (11) 0.0806 (6) −0.0219 (6) 0.0044 (5) −0.0187 (6)
O3 0.0951 (17) 0.0433 (16) 0.0743 (14) 0.0199 (13) 0.0445 (12) 0.0203 (11)
O4 0.0681 (15) 0.0522 (16) 0.0596 (13) −0.0158 (13) 0.0202 (11) 0.0084 (11)
N3 0.0560 (16) 0.0297 (17) 0.0407 (12) 0.0078 (13) 0.0174 (11) 0.0041 (12)
N4 0.0558 (17) 0.0353 (18) 0.0450 (15) −0.0108 (12) 0.0218 (12) −0.0038 (12)
C16 0.0478 (18) 0.041 (2) 0.0290 (14) 0.0003 (16) 0.0085 (12) −0.0003 (14)
C17 0.0533 (19) 0.042 (2) 0.0432 (16) 0.0020 (16) 0.0102 (14) 0.0024 (15)
C18 0.056 (2) 0.059 (3) 0.0485 (17) −0.0079 (18) 0.0140 (15) 0.0105 (16)
C19 0.057 (2) 0.082 (3) 0.0536 (19) −0.006 (2) 0.0251 (15) −0.002 (2)
C20 0.067 (2) 0.064 (3) 0.063 (2) 0.0073 (19) 0.0289 (17) −0.0031 (19)
C21 0.061 (2) 0.043 (2) 0.0477 (17) 0.0008 (17) 0.0171 (15) −0.0021 (15)
C22 0.057 (2) 0.040 (2) 0.0411 (16) 0.0048 (18) 0.0137 (14) 0.0046 (15)
C23 0.0547 (19) 0.047 (2) 0.0492 (17) 0.0036 (16) 0.0200 (14) 0.0108 (15)
C24 0.0523 (19) 0.038 (2) 0.0508 (18) 0.0014 (17) 0.0262 (15) 0.0021 (15)
C25 0.0553 (19) 0.040 (2) 0.0403 (17) −0.0007 (16) 0.0255 (14) −0.0032 (15)
C26 0.055 (2) 0.050 (2) 0.0515 (19) 0.0012 (17) 0.0233 (15) 0.0010 (16)
C27 0.0464 (19) 0.082 (3) 0.055 (2) −0.0023 (18) 0.0182 (16) −0.0085 (19)
C28 0.079 (3) 0.111 (4) 0.0435 (19) 0.002 (2) 0.0246 (19) 0.009 (2)
C29 0.097 (3) 0.088 (3) 0.052 (2) −0.015 (2) 0.0347 (19) 0.011 (2)
C30 0.076 (2) 0.054 (2) 0.0502 (19) −0.0157 (19) 0.0300 (16) −0.0015 (17)

Geometric parameters (Å, °)

Cl1—C3 1.734 (3) Cl3—C18 1.734 (3)
Cl2—C12 1.731 (3) Cl4—C27 1.723 (3)
O1—C7 1.226 (3) O3—C22 1.223 (3)
O2—C9 1.224 (3) O4—C24 1.225 (3)
N1—C7 1.338 (3) N3—C22 1.340 (3)
N1—C1 1.409 (4) N3—C16 1.418 (3)
N1—H1N 0.843 (16) N3—H3N 0.853 (16)
N2—C9 1.343 (4) N4—C24 1.337 (3)
N2—C10 1.421 (4) N4—C25 1.424 (3)
N2—H2N 0.867 (17) N4—H4N 0.845 (16)
C1—C6 1.377 (4) C16—C21 1.381 (4)
C1—C2 1.380 (4) C16—C17 1.387 (3)
C2—C3 1.376 (4) C17—C18 1.376 (4)
C2—H2 0.9300 C17—H17 0.9300
C3—C4 1.372 (5) C18—C19 1.379 (4)
C4—C5 1.378 (5) C19—C20 1.363 (4)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.367 (5) C20—C21 1.383 (4)
C5—H5 0.9300 C20—H20 0.9300
C6—H6 0.9300 C21—H21 0.9300
C7—C8 1.509 (4) C22—C23 1.518 (4)
C8—C9 1.513 (4) C23—C24 1.520 (4)
C8—H8A 0.9700 C23—H23A 0.9700
C8—H8B 0.9700 C23—H23B 0.9700
C10—C15 1.372 (4) C25—C26 1.376 (4)
C10—C11 1.391 (4) C25—C30 1.382 (3)
C11—C12 1.370 (4) C26—C27 1.375 (4)
C11—H11 0.9300 C26—H26 0.9300
C12—C13 1.356 (4) C27—C28 1.376 (4)
C13—C14 1.362 (5) C28—C29 1.370 (4)
C13—H13 0.9300 C28—H28 0.9300
C14—C15 1.383 (5) C29—C30 1.382 (4)
C14—H14 0.9300 C29—H29 0.9300
C15—H15 0.9300 C30—H30 0.9300
C7—N1—C1 129.4 (3) C22—N3—C16 128.3 (2)
C7—N1—H1N 111 (2) C22—N3—H3N 116.7 (18)
C1—N1—H1N 119 (2) C16—N3—H3N 114.8 (18)
C9—N2—C10 128.4 (3) C24—N4—C25 128.6 (2)
C9—N2—H2N 116.6 (19) C24—N4—H4N 116.9 (18)
C10—N2—H2N 114.8 (19) C25—N4—H4N 113.6 (18)
C6—C1—C2 120.0 (3) C21—C16—C17 120.0 (3)
C6—C1—N1 116.4 (3) C21—C16—N3 123.9 (3)
C2—C1—N1 123.6 (3) C17—C16—N3 116.0 (3)
C3—C2—C1 118.9 (3) C18—C17—C16 119.4 (3)
C3—C2—H2 120.5 C18—C17—H17 120.3
C1—C2—H2 120.5 C16—C17—H17 120.3
C4—C3—C2 121.9 (3) C17—C18—C19 121.1 (3)
C4—C3—Cl1 119.0 (3) C17—C18—Cl3 119.3 (3)
C2—C3—Cl1 119.1 (3) C19—C18—Cl3 119.6 (3)
C3—C4—C5 118.0 (4) C20—C19—C18 118.7 (3)
C3—C4—H4 121.0 C20—C19—H19 120.6
C5—C4—H4 121.0 C18—C19—H19 120.6
C6—C5—C4 121.3 (4) C19—C20—C21 121.8 (3)
C6—C5—H5 119.4 C19—C20—H20 119.1
C4—C5—H5 119.4 C21—C20—H20 119.1
C5—C6—C1 119.9 (4) C20—C21—C16 118.9 (3)
C5—C6—H6 120.1 C20—C21—H21 120.5
C1—C6—H6 120.1 C16—C21—H21 120.5
O1—C7—N1 123.9 (3) O3—C22—N3 124.7 (3)
O1—C7—C8 121.3 (3) O3—C22—C23 120.3 (3)
N1—C7—C8 114.8 (3) N3—C22—C23 115.0 (3)
C7—C8—C9 108.8 (2) C22—C23—C24 107.5 (2)
C7—C8—H8A 109.9 C22—C23—H23A 110.2
C9—C8—H8A 109.9 C24—C23—H23A 110.2
C7—C8—H8B 109.9 C22—C23—H23B 110.2
C9—C8—H8B 109.9 C24—C23—H23B 110.2
H8A—C8—H8B 108.3 H23A—C23—H23B 108.5
O2—C9—N2 124.4 (3) O4—C24—N4 124.2 (3)
O2—C9—C8 120.5 (3) O4—C24—C23 120.7 (2)
N2—C9—C8 115.0 (3) N4—C24—C23 115.1 (3)
C15—C10—C11 120.0 (3) C26—C25—C30 120.6 (3)
C15—C10—N2 123.6 (3) C26—C25—N4 122.8 (3)
C11—C10—N2 116.4 (3) C30—C25—N4 116.6 (3)
C12—C11—C10 119.9 (3) C25—C26—C27 118.3 (3)
C12—C11—H11 120.0 C25—C26—H26 120.9
C10—C11—H11 120.0 C27—C26—H26 120.9
C13—C12—C11 120.9 (3) C28—C27—C26 122.3 (3)
C13—C12—Cl2 119.3 (3) C28—C27—Cl4 118.6 (3)
C11—C12—Cl2 119.7 (3) C26—C27—Cl4 119.1 (3)
C12—C13—C14 118.6 (3) C29—C28—C27 118.6 (3)
C12—C13—H13 120.7 C29—C28—H28 120.7
C14—C13—H13 120.7 C27—C28—H28 120.7
C13—C14—C15 122.8 (4) C28—C29—C30 120.5 (3)
C13—C14—H14 118.6 C28—C29—H29 119.8
C15—C14—H14 118.6 C30—C29—H29 119.8
C10—C15—C14 117.8 (3) C25—C30—C29 119.7 (3)
C10—C15—H15 121.1 C25—C30—H30 120.1
C14—C15—H15 121.1 C29—C30—H30 120.1
C7—N1—C1—C6 −174.9 (3) C22—N3—C16—C21 −8.5 (4)
C7—N1—C1—C2 6.2 (5) C22—N3—C16—C17 170.5 (3)
C6—C1—C2—C3 0.0 (4) C21—C16—C17—C18 1.0 (4)
N1—C1—C2—C3 178.9 (3) N3—C16—C17—C18 −178.1 (2)
C1—C2—C3—C4 0.1 (5) C16—C17—C18—C19 −0.4 (4)
C1—C2—C3—Cl1 −179.7 (2) C16—C17—C18—Cl3 178.88 (19)
C2—C3—C4—C5 −0.7 (6) C17—C18—C19—C20 −0.2 (4)
Cl1—C3—C4—C5 179.0 (3) Cl3—C18—C19—C20 −179.5 (2)
C3—C4—C5—C6 1.4 (6) C18—C19—C20—C21 0.2 (5)
C4—C5—C6—C1 −1.3 (6) C19—C20—C21—C16 0.3 (4)
C2—C1—C6—C5 0.6 (5) C17—C16—C21—C20 −0.9 (4)
N1—C1—C6—C5 −178.4 (3) N3—C16—C21—C20 178.1 (3)
C1—N1—C7—O1 5.5 (5) C16—N3—C22—O3 1.3 (5)
C1—N1—C7—C8 −174.1 (3) C16—N3—C22—C23 −176.1 (2)
O1—C7—C8—C9 −60.1 (4) O3—C22—C23—C24 −70.9 (3)
N1—C7—C8—C9 119.5 (3) N3—C22—C23—C24 106.7 (3)
C10—N2—C9—O2 5.1 (5) C25—N4—C24—O4 5.2 (5)
C10—N2—C9—C8 −172.8 (2) C25—N4—C24—C23 −173.6 (3)
C7—C8—C9—O2 −71.9 (3) C22—C23—C24—O4 −54.1 (4)
C7—C8—C9—N2 106.1 (3) C22—C23—C24—N4 124.7 (3)
C9—N2—C10—C15 −6.8 (5) C24—N4—C25—C26 −10.5 (4)
C9—N2—C10—C11 171.2 (3) C24—N4—C25—C30 169.7 (3)
C15—C10—C11—C12 0.3 (4) C30—C25—C26—C27 −1.3 (4)
N2—C10—C11—C12 −177.8 (2) N4—C25—C26—C27 179.0 (3)
C10—C11—C12—C13 0.2 (4) C25—C26—C27—C28 −0.8 (4)
C10—C11—C12—Cl2 178.4 (2) C25—C26—C27—Cl4 179.7 (2)
C11—C12—C13—C14 −0.1 (5) C26—C27—C28—C29 1.6 (5)
Cl2—C12—C13—C14 −178.3 (3) Cl4—C27—C28—C29 −178.8 (3)
C12—C13—C14—C15 −0.6 (6) C27—C28—C29—C30 −0.4 (5)
C11—C10—C15—C14 −0.9 (5) C26—C25—C30—C29 2.5 (4)
N2—C10—C15—C14 177.0 (3) N4—C25—C30—C29 −177.8 (3)
C13—C14—C15—C10 1.1 (6) C28—C29—C30—C25 −1.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3 0.84 (2) 2.11 (2) 2.950 (3) 176 (3)
N2—H2N···O4i 0.87 (2) 2.11 (2) 2.961 (3) 169 (3)
N3—H3N···O1ii 0.85 (2) 2.09 (2) 2.939 (3) 173 (2)
N4—H4N···O2 0.85 (2) 2.12 (2) 2.947 (3) 168 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2242).

References

  1. Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159. [DOI] [PubMed]
  2. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.
  3. Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.
  4. Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o3037. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o966. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031333/nc2242sup1.cif

e-67-o2278-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031333/nc2242Isup2.hkl

e-67-o2278-Isup2.hkl (252.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031333/nc2242Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES