Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 6;67(Pt 9):o2274. doi: 10.1107/S1600536811031394

N-(4-Chloro­phenyl­sulfon­yl)-2-methyl­propanamide

P G Nirmala a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3200645  PMID: 22064939

Abstract

In the crystal structure of the title compound, C10H12ClNO3S, the N—C bond in the C—SO2—NH—C segment has a gauche torsion with respect to the S=O bonds. The mol­ecule is twisted at the S atom with a C—S—N—C torsion angle of −62.3 (3)°. The benzene ring and the SO2—NH—CO—C segment form a dihedral angle of 89.3 (1)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into inversion dimers.

Related literature

For the sulfanilamide moiety in sulfonamide drugs, see: Maren (1976). For its ability to form hydrogen bonds in the solid state, see: Yang & Guillory (1972). For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007), on N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2003) and on N-(aryl­sulfon­yl)-amides, see: Gowda et al. (2008); Shakuntala et al. (2011).graphic file with name e-67-o2274-scheme1.jpg

Experimental

Crystal data

  • C10H12ClNO3S

  • M r = 261.72

  • Triclinic, Inline graphic

  • a = 6.207 (1) Å

  • b = 10.395 (3) Å

  • c = 10.497 (3) Å

  • α = 70.150 (2)°

  • β = 79.160 (2)°

  • γ = 86.010 (2)°

  • V = 625.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.46 × 0.20 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2009) T min = 0.815, T max = 0.964

  • 3846 measured reflections

  • 2476 independent reflections

  • 1842 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.126

  • S = 1.19

  • 2476 reflections

  • 148 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031394/nc2243sup1.cif

e-67-o2274-sup1.cif (16KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031394/nc2243Isup2.hkl

e-67-o2274-Isup2.hkl (121.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031394/nc2243Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.08 (2) 2.912 (4) 169 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the University Grants Commission, Government of India, New Delhi, for a one time grant under its BSR scheme.

supplementary crystallographic information

Comment

The molecular structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors gives rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides has also been studied (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures of this class of compounds. As part of our work on the effects of substituents on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Gowda et al., 2003) and N-(arylsulfonyl)-acetamides (Gowda et al., 2008, Shakuntala et al., 2011), in the present work, the crystal structure of N-(4-chlorophenylsulfonyl)-2,2-dimethylacetamide (I) has been determined. The N—C bond in the C—SO2—NH—C segment has gauche torsion with respect to the S═O bonds. The molecule is twisted at the S-atom with a C—S—N—C torsion angle of -62.3 (3)°, compared to the values of -72.5 (2)° in N-(4-chlorophenylsulfonyl)-2,2-dichloroacetamide (II) (Gowda et al., 2008) and N-(2-chlorophenylsulfonyl)- 2,2-dimethylacetamide (III)(Shakuntala et al., 2011).

Further, the dihedral angle between the benzene ring and the SO2—NH—CO—C segment in (I) is 89.3 (1)°, compared to the values of 79.7 (1)° in (II) and 87.4 (1)° in (III).

In the crystal structure, the moleucles are connected into centrosymmetrically dimers by intermolecular N–H···O hydrogen bonding (Table 1). Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing 4-chlorobenzenesulfonamide (0.10 mole) with an excess of 2,2-dimethylacetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.

Plate like colorless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96Å and methyne C—H = 0.98 Å.

All H atoms were refined with isotropic displacement parameters. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal structure of the title compound showing the dimers. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H12ClNO3S Z = 2
Mr = 261.72 F(000) = 272
Triclinic, P1 Dx = 1.389 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.207 (1) Å Cell parameters from 1240 reflections
b = 10.395 (3) Å θ = 3.3–27.8°
c = 10.497 (3) Å µ = 0.46 mm1
α = 70.150 (2)° T = 293 K
β = 79.160 (2)° Plate, colourless
γ = 86.010 (2)° 0.46 × 0.20 × 0.08 mm
V = 625.7 (3) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2476 independent reflections
Radiation source: fine-focus sealed tube 1842 reflections with I > 2σ(I)
graphite Rint = 0.014
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2009) h = −7→7
Tmin = 0.815, Tmax = 0.964 k = −12→12
3846 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0233P)2 + 0.632P] where P = (Fo2 + 2Fc2)/3
2476 reflections (Δ/σ)max = 0.001
148 parameters Δρmax = 0.28 e Å3
1 restraint Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1905 (5) 0.2375 (3) 0.9043 (3) 0.0475 (7)
C2 −0.0001 (6) 0.2717 (4) 0.8506 (4) 0.0610 (9)
H2 −0.0818 0.3477 0.8593 0.073*
C3 −0.0683 (6) 0.1930 (4) 0.7844 (4) 0.0670 (10)
H3 −0.1957 0.2156 0.7468 0.080*
C4 0.0535 (7) 0.0805 (3) 0.7742 (4) 0.0638 (10)
C5 0.2423 (7) 0.0456 (4) 0.8278 (4) 0.0709 (11)
H5 0.3221 −0.0315 0.8207 0.085*
C6 0.3124 (6) 0.1255 (3) 0.8920 (4) 0.0612 (9)
H6 0.4421 0.1040 0.9271 0.073*
C7 0.4540 (6) 0.5278 (4) 0.7543 (4) 0.0578 (9)
C8 0.4194 (7) 0.6715 (4) 0.6608 (4) 0.0716 (11)
H8 0.3561 0.7263 0.7187 0.086*
C9 0.2542 (9) 0.6652 (6) 0.5756 (5) 0.1190 (19)
H9A 0.1202 0.6271 0.6350 0.143*
H9B 0.3103 0.6089 0.5208 0.143*
H9C 0.2265 0.7558 0.5165 0.143*
C10 0.6291 (10) 0.7353 (6) 0.5780 (6) 0.151 (3)
H10A 0.6959 0.6822 0.5219 0.182*
H10B 0.7258 0.7386 0.6383 0.182*
H10C 0.6015 0.8265 0.5202 0.182*
N1 0.3069 (5) 0.4914 (3) 0.8767 (3) 0.0560 (7)
H1N 0.200 (4) 0.541 (3) 0.892 (4) 0.067*
O1 0.0960 (4) 0.3525 (3) 1.0924 (2) 0.0729 (7)
O2 0.4794 (4) 0.2850 (3) 1.0314 (3) 0.0714 (7)
O3 0.5885 (4) 0.4482 (3) 0.7273 (3) 0.0863 (9)
Cl1 −0.0354 (3) −0.01843 (12) 0.69033 (14) 0.1076 (5)
S1 0.27563 (15) 0.33738 (9) 0.99054 (9) 0.0559 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0524 (18) 0.0386 (16) 0.0429 (17) 0.0085 (14) −0.0084 (14) −0.0043 (13)
C2 0.055 (2) 0.056 (2) 0.074 (2) 0.0148 (16) −0.0162 (18) −0.0244 (18)
C3 0.063 (2) 0.063 (2) 0.072 (2) 0.0024 (18) −0.0210 (19) −0.014 (2)
C4 0.090 (3) 0.0428 (19) 0.053 (2) −0.0118 (18) −0.0140 (19) −0.0066 (16)
C5 0.095 (3) 0.0419 (19) 0.077 (3) 0.0201 (19) −0.026 (2) −0.0180 (18)
C6 0.068 (2) 0.0471 (19) 0.070 (2) 0.0184 (17) −0.0255 (19) −0.0175 (17)
C7 0.052 (2) 0.059 (2) 0.059 (2) 0.0048 (17) −0.0146 (17) −0.0148 (17)
C8 0.086 (3) 0.062 (2) 0.057 (2) 0.007 (2) −0.012 (2) −0.0084 (18)
C9 0.146 (5) 0.114 (4) 0.095 (4) 0.039 (4) −0.060 (4) −0.020 (3)
C10 0.123 (5) 0.128 (5) 0.133 (5) −0.026 (4) −0.001 (4) 0.041 (4)
N1 0.0637 (19) 0.0447 (16) 0.0567 (17) 0.0105 (13) −0.0102 (15) −0.0155 (13)
O1 0.0929 (19) 0.0657 (16) 0.0489 (14) 0.0221 (14) −0.0029 (13) −0.0142 (12)
O2 0.0769 (17) 0.0681 (16) 0.0755 (17) 0.0171 (13) −0.0381 (14) −0.0221 (13)
O3 0.0719 (18) 0.087 (2) 0.0815 (19) 0.0296 (15) −0.0026 (15) −0.0156 (16)
Cl1 0.1677 (13) 0.0641 (7) 0.1053 (9) −0.0180 (7) −0.0502 (9) −0.0294 (6)
S1 0.0676 (6) 0.0489 (5) 0.0494 (5) 0.0139 (4) −0.0159 (4) −0.0140 (4)

Geometric parameters (Å, °)

C1—C6 1.374 (4) C7—C8 1.510 (5)
C1—C2 1.378 (4) C8—C10 1.481 (6)
C1—S1 1.753 (3) C8—C9 1.500 (6)
C2—C3 1.370 (5) C8—H8 0.9800
C2—H2 0.9300 C9—H9A 0.9600
C3—C4 1.372 (5) C9—H9B 0.9600
C3—H3 0.9300 C9—H9C 0.9600
C4—C5 1.368 (5) C10—H10A 0.9600
C4—Cl1 1.736 (4) C10—H10B 0.9600
C5—C6 1.368 (5) C10—H10C 0.9600
C5—H5 0.9300 N1—S1 1.639 (3)
C6—H6 0.9300 N1—H1N 0.840 (18)
C7—O3 1.199 (4) O1—S1 1.433 (2)
C7—N1 1.380 (4) O2—S1 1.425 (2)
C6—C1—C2 120.7 (3) C10—C8—H8 107.9
C6—C1—S1 119.9 (3) C9—C8—H8 107.9
C2—C1—S1 119.4 (2) C7—C8—H8 107.9
C3—C2—C1 119.5 (3) C8—C9—H9A 109.5
C3—C2—H2 120.2 C8—C9—H9B 109.5
C1—C2—H2 120.2 H9A—C9—H9B 109.5
C2—C3—C4 119.2 (3) C8—C9—H9C 109.5
C2—C3—H3 120.4 H9A—C9—H9C 109.5
C4—C3—H3 120.4 H9B—C9—H9C 109.5
C5—C4—C3 121.5 (3) C8—C10—H10A 109.5
C5—C4—Cl1 119.8 (3) C8—C10—H10B 109.5
C3—C4—Cl1 118.7 (3) H10A—C10—H10B 109.5
C6—C5—C4 119.2 (3) C8—C10—H10C 109.5
C6—C5—H5 120.4 H10A—C10—H10C 109.5
C4—C5—H5 120.4 H10B—C10—H10C 109.5
C5—C6—C1 119.8 (3) C7—N1—S1 125.8 (2)
C5—C6—H6 120.1 C7—N1—H1N 122 (3)
C1—C6—H6 120.1 S1—N1—H1N 110 (3)
O3—C7—N1 121.2 (3) O2—S1—O1 119.07 (16)
O3—C7—C8 125.4 (3) O2—S1—N1 110.56 (16)
N1—C7—C8 113.3 (3) O1—S1—N1 103.75 (15)
C10—C8—C9 113.5 (4) O2—S1—C1 108.79 (15)
C10—C8—C7 111.6 (4) O1—S1—C1 108.78 (17)
C9—C8—C7 107.7 (4) N1—S1—C1 104.95 (15)
C6—C1—C2—C3 0.0 (5) N1—C7—C8—C9 −87.3 (4)
S1—C1—C2—C3 −179.3 (3) O3—C7—N1—S1 −7.0 (5)
C1—C2—C3—C4 0.7 (6) C8—C7—N1—S1 170.6 (3)
C2—C3—C4—C5 −0.5 (6) C7—N1—S1—O2 54.8 (3)
C2—C3—C4—Cl1 179.9 (3) C7—N1—S1—O1 −176.4 (3)
C3—C4—C5—C6 −0.6 (6) C7—N1—S1—C1 −62.3 (3)
Cl1—C4—C5—C6 179.1 (3) C6—C1—S1—O2 2.9 (3)
C4—C5—C6—C1 1.4 (6) C2—C1—S1—O2 −177.8 (3)
C2—C1—C6—C5 −1.1 (5) C6—C1—S1—O1 −128.3 (3)
S1—C1—C6—C5 178.3 (3) C2—C1—S1—O1 51.1 (3)
O3—C7—C8—C10 −35.0 (6) C6—C1—S1—N1 121.2 (3)
N1—C7—C8—C10 147.5 (4) C2—C1—S1—N1 −59.4 (3)
O3—C7—C8—C9 90.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.84 (2) 2.08 (2) 2.912 (4) 169 (3)

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2243).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159. [DOI] [PubMed]
  3. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.
  4. Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1521. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Jyothi, K., Kožíšek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
  6. Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327. [DOI] [PubMed]
  7. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o595. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031394/nc2243sup1.cif

e-67-o2274-sup1.cif (16KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031394/nc2243Isup2.hkl

e-67-o2274-Isup2.hkl (121.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031394/nc2243Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES