Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):m1270–m1271. doi: 10.1107/S160053681103282X

(4-Chloro-3-nitro­benzoato)triphenyl­tin(IV)

Yip-Foo Win a, Chen-Shang Choong a, Siang-Guan Teoh b, Ching Kheng Quah c,, Hoong-Kun Fun c,*,§
PMCID: PMC3200665  PMID: 22065496

Abstract

In the title compound, [Sn(C6H5)3(C7H3ClNO4)], the four-coordinate SnIV atom exists in a distorted tetra­hedral geometry, formed by a monodentate carboxyl­ate group and three phenyl rings. The conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(5) ring. The aromatic ring of the 4-chloro-3-nitro­benzoate ligand makes dihedral angles of 75.64 (12), 64.37 (12) and 2.97 (12)° with the three phenyl ligands. The O atoms of the nitro group are disordered over two sets of sites in a 0.817 (5):0.183 (5) ratio. In the crystal, mol­ecules are linked via inter­molecular C—H⋯O hydrogen bonds into chains running parallel to [010].

Related literature

For general background to and the metal coordination environment of the title complex, see: Win et al. (2008, 2010, 2011a ,b ). For reference bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-m1270-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)3(C7H3ClNO4)]

  • M r = 550.54

  • Monoclinic, Inline graphic

  • a = 12.3926 (2) Å

  • b = 8.8033 (1) Å

  • c = 21.5592 (3) Å

  • β = 103.217 (1)°

  • V = 2289.72 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 100 K

  • 0.35 × 0.31 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.668, T max = 0.807

  • 23882 measured reflections

  • 5204 independent reflections

  • 4817 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.056

  • S = 1.11

  • 5204 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103282X/hb6362sup1.cif

e-67-m1270-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103282X/hb6362Isup2.hkl

e-67-m1270-Isup2.hkl (254.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn1—O1 2.0558 (15)
Sn1—C6 2.121 (2)
Sn1—C18 2.124 (2)
Sn1—C12 2.127 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.93 2.55 3.346 (3) 144
C17—H17A⋯O1 0.93 2.56 3.140 (3) 120

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (Project No. IPSR/RMC/UTARRF/C1-C11/C07) and Universiti Sains Malaysia (USM) for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

The study of triphenyltin(IV) carboxylate complexes have received tremendous attention due to their structural diversity for which their structure could be monomeric or polymeric although the reaction was carried out in 1:1 molar ratio between the triphenyltin(IV) hydroxide and the respective acid (Win et al., 2008; 2010; 2011a,b). In this study, the structure of the title complex is similar to (2-chloro-4-nitrobenzoato)(methanol) triphenyltin(IV) (Win et al., 2011a). The only exceptions are that the methanol is not part of the crystal structure and the 2-chloro-4-nitrobenzoic acid is substituted with 4-chloro-3-nitrobenzoic acid.

The molecular structure is shown in Fig. 1. The four-coordinate tin atom (Sn1) exists in a distorted tetrahedral geometry, formed by a monodentate carboxylate group and three phenyl rings. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The molecular structure is stabilized by an intramolecular C17–H17A···O1 hydrogen bond (Table 1), which generates an S(5) ring motif (Fig. 1, Bernstein et al., 1995). The phenyl ring (C20-C25) of 4-chloro-3-nitrobenzoate moiety makes dihedral angles of 75.64 (12), 64.37 (12) and 2.97 (12)° with respect to the other three phenyl rings (C1-C6, C7-C12 and C13-C18). Oxygen atoms (O3/O4) of the nitro group are disordered over two positions with refined site-occupancies of 0.817 (5) and 0.183 (5).

In the crystal (Fig. 2), molecules are linked via intermolecular C3–H3A···O2 hydrogen bonds (Table 1) into one-dimensional chains parallel to [010] direction.

Experimental

The title complex was obtained by heating under reflux a 1:1 molar mixture of triphenyltin(IV) hydroxide (1.10 g, 3 mmol) and 4-chloro-3-nitrobenzoic acid (0.60 g, 3 mmol) in methanol (50 ml) for 2 h. A clear transparent solution was isolated by filtration and kept in a bottle. After few days, colourless blocks (1.43 g, 82.1% yield) were collected. Melting point: 408-410 K. Analysis for C25H18NO4ClSn: C, 55.60; H, 3.30; N, 2.55 %. Calculated for C25H18NO4ClSn: C, 54.54; H, 3.29; N, 2.54 %.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). Oxygen atoms (O3/O4) of the nitro group are disordered over two positions with refined site-occupancies of 0.817 (5) and 0.183 (5). The highest residual electron density peak and the deepest hole are located at 0.79 and 0.71 Å from atom Sn1, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds and minor component of disorder are shown as dashed line and open bonds, respectively.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only the major disorder component is shown.

Crystal data

[Sn(C6H5)3(C7H3ClNO4)] F(000) = 1096
Mr = 550.54 Dx = 1.597 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9115 reflections
a = 12.3926 (2) Å θ = 2.5–32.7°
b = 8.8033 (1) Å µ = 1.26 mm1
c = 21.5592 (3) Å T = 100 K
β = 103.217 (1)° Block, colourless
V = 2289.72 (6) Å3 0.35 × 0.31 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 5204 independent reflections
Radiation source: fine-focus sealed tube 4817 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→16
Tmin = 0.668, Tmax = 0.807 k = −11→9
23882 measured reflections l = −28→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0116P)2 + 3.5862P] where P = (Fo2 + 2Fc2)/3
5204 reflections (Δ/σ)max = 0.001
308 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.68 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sn1 0.364093 (12) 0.404888 (17) 0.369328 (7) 0.01672 (5)
Cl1 0.01735 (7) 0.74667 (9) 0.64665 (4) 0.0474 (2)
O1 0.29596 (13) 0.45731 (19) 0.44511 (8) 0.0217 (3)
O2 0.18430 (14) 0.6075 (2) 0.37524 (8) 0.0256 (4)
O3 −0.1368 (2) 0.8214 (4) 0.45615 (14) 0.0435 (8) 0.817 (5)
O4 −0.0736 (2) 0.9462 (3) 0.54411 (12) 0.0375 (7) 0.817 (5)
O3X −0.0894 (9) 0.9151 (14) 0.4504 (6) 0.038 (3) 0.183 (5)
O4X −0.1525 (9) 0.8071 (14) 0.5262 (7) 0.049 (4) 0.183 (5)
N1 −0.07089 (19) 0.8404 (3) 0.50478 (13) 0.0344 (5)
C1 0.22638 (19) 0.1332 (3) 0.30822 (12) 0.0233 (5)
H1A 0.2741 0.0800 0.3405 0.028*
C2 0.1424 (2) 0.0565 (3) 0.26581 (12) 0.0293 (6)
H2A 0.1340 −0.0478 0.2699 0.035*
C3 0.0713 (2) 0.1352 (3) 0.21756 (13) 0.0326 (6)
H3A 0.0149 0.0840 0.1895 0.039*
C4 0.0845 (2) 0.2900 (3) 0.21118 (12) 0.0311 (6)
H4A 0.0374 0.3426 0.1785 0.037*
C5 0.1678 (2) 0.3671 (3) 0.25337 (11) 0.0258 (5)
H5A 0.1761 0.4712 0.2489 0.031*
C6 0.23910 (18) 0.2891 (3) 0.30242 (11) 0.0200 (5)
C7 0.3731 (2) 0.7235 (3) 0.30473 (11) 0.0259 (5)
H7A 0.2964 0.7249 0.2987 0.031*
C8 0.4268 (2) 0.8430 (3) 0.28291 (12) 0.0293 (6)
H8A 0.3858 0.9241 0.2621 0.035*
C9 0.5414 (2) 0.8432 (3) 0.29180 (12) 0.0283 (6)
H9A 0.5769 0.9245 0.2774 0.034*
C10 0.6026 (2) 0.7222 (3) 0.32206 (12) 0.0281 (5)
H10A 0.6793 0.7216 0.3280 0.034*
C11 0.5490 (2) 0.6014 (3) 0.34361 (11) 0.0234 (5)
H11A 0.5904 0.5197 0.3636 0.028*
C12 0.43383 (19) 0.6006 (3) 0.33577 (10) 0.0200 (5)
C13 0.5609 (2) 0.1802 (3) 0.39217 (12) 0.0249 (5)
H13A 0.5514 0.1861 0.3482 0.030*
C14 0.6447 (2) 0.0898 (3) 0.42741 (13) 0.0286 (5)
H14A 0.6911 0.0358 0.4070 0.034*
C15 0.6592 (2) 0.0801 (3) 0.49280 (13) 0.0281 (5)
H15A 0.7153 0.0196 0.5165 0.034*
C16 0.5902 (2) 0.1608 (3) 0.52298 (12) 0.0275 (5)
H16A 0.5999 0.1538 0.5670 0.033*
C17 0.50684 (19) 0.2517 (3) 0.48821 (11) 0.0228 (5)
H17A 0.4613 0.3061 0.5090 0.027*
C18 0.49066 (18) 0.2622 (2) 0.42193 (11) 0.0183 (4)
C19 0.21426 (18) 0.5547 (3) 0.42882 (11) 0.0199 (5)
C20 0.16128 (17) 0.5965 (3) 0.48230 (11) 0.0188 (4)
C21 0.07045 (19) 0.6930 (3) 0.47042 (12) 0.0219 (5)
H21A 0.0401 0.7267 0.4292 0.026*
C22 0.02544 (19) 0.7387 (3) 0.52057 (12) 0.0230 (5)
C23 0.0696 (2) 0.6910 (3) 0.58240 (12) 0.0261 (5)
C24 0.1580 (2) 0.5903 (3) 0.59346 (12) 0.0285 (5)
H24A 0.1873 0.5546 0.6345 0.034*
C25 0.20268 (19) 0.5428 (3) 0.54347 (11) 0.0227 (5)
H25A 0.2612 0.4741 0.5511 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.01539 (8) 0.01828 (8) 0.01466 (8) 0.00306 (6) −0.00037 (6) −0.00178 (6)
Cl1 0.0558 (5) 0.0539 (5) 0.0429 (4) 0.0225 (4) 0.0327 (4) 0.0056 (4)
O1 0.0198 (8) 0.0248 (8) 0.0196 (9) 0.0073 (7) 0.0027 (7) −0.0023 (7)
O2 0.0247 (8) 0.0332 (10) 0.0166 (9) 0.0060 (8) −0.0003 (7) −0.0012 (7)
O3 0.0263 (14) 0.0471 (19) 0.0520 (18) 0.0166 (13) −0.0017 (13) 0.0013 (14)
O4 0.0418 (14) 0.0267 (13) 0.0495 (16) 0.0145 (10) 0.0218 (12) 0.0025 (11)
O3X 0.029 (6) 0.032 (7) 0.049 (7) 0.016 (5) 0.001 (5) −0.003 (5)
O4X 0.029 (6) 0.043 (7) 0.085 (10) 0.008 (5) 0.032 (6) 0.005 (6)
N1 0.0292 (12) 0.0284 (12) 0.0495 (16) 0.0116 (10) 0.0168 (12) 0.0074 (11)
C1 0.0188 (11) 0.0301 (13) 0.0201 (12) 0.0018 (10) 0.0028 (9) −0.0037 (10)
C2 0.0245 (13) 0.0318 (14) 0.0324 (15) −0.0065 (11) 0.0080 (11) −0.0114 (11)
C3 0.0187 (12) 0.0471 (17) 0.0305 (15) −0.0032 (11) 0.0022 (11) −0.0175 (12)
C4 0.0211 (12) 0.0506 (17) 0.0172 (13) 0.0091 (12) −0.0047 (10) −0.0092 (12)
C5 0.0240 (12) 0.0320 (14) 0.0206 (13) 0.0043 (10) 0.0032 (10) −0.0042 (10)
C6 0.0148 (10) 0.0292 (12) 0.0148 (11) 0.0020 (9) 0.0010 (9) −0.0059 (10)
C7 0.0270 (12) 0.0304 (13) 0.0201 (12) 0.0085 (11) 0.0050 (10) 0.0011 (10)
C8 0.0425 (15) 0.0243 (12) 0.0230 (13) 0.0103 (11) 0.0111 (12) 0.0061 (10)
C9 0.0423 (15) 0.0237 (12) 0.0209 (13) −0.0029 (11) 0.0114 (11) 0.0000 (10)
C10 0.0263 (13) 0.0318 (14) 0.0246 (13) −0.0044 (11) 0.0026 (10) −0.0015 (11)
C11 0.0254 (12) 0.0237 (12) 0.0182 (12) 0.0018 (10) −0.0008 (9) 0.0005 (10)
C12 0.0248 (11) 0.0200 (11) 0.0139 (11) 0.0019 (9) 0.0017 (9) −0.0009 (9)
C13 0.0254 (12) 0.0253 (13) 0.0237 (13) 0.0042 (10) 0.0048 (10) −0.0006 (10)
C14 0.0231 (12) 0.0262 (12) 0.0360 (15) 0.0079 (10) 0.0059 (11) −0.0029 (11)
C15 0.0207 (12) 0.0214 (12) 0.0365 (15) 0.0040 (10) −0.0052 (10) 0.0027 (11)
C16 0.0296 (13) 0.0287 (13) 0.0194 (13) 0.0038 (11) −0.0043 (10) 0.0013 (10)
C17 0.0221 (11) 0.0219 (12) 0.0232 (13) 0.0039 (9) 0.0026 (10) −0.0026 (10)
C18 0.0154 (10) 0.0162 (10) 0.0210 (12) −0.0002 (8) −0.0007 (9) −0.0006 (9)
C19 0.0162 (10) 0.0204 (11) 0.0209 (12) −0.0004 (9) −0.0003 (9) −0.0061 (9)
C20 0.0148 (10) 0.0182 (10) 0.0219 (12) −0.0011 (9) 0.0011 (9) −0.0038 (9)
C21 0.0202 (11) 0.0200 (11) 0.0229 (13) 0.0020 (9) −0.0001 (9) 0.0016 (10)
C22 0.0169 (11) 0.0169 (11) 0.0356 (14) 0.0025 (9) 0.0067 (10) −0.0010 (10)
C23 0.0262 (12) 0.0265 (13) 0.0296 (14) 0.0016 (10) 0.0148 (11) −0.0003 (10)
C24 0.0276 (12) 0.0350 (14) 0.0235 (13) 0.0080 (11) 0.0071 (10) 0.0028 (11)
C25 0.0172 (11) 0.0257 (12) 0.0244 (13) 0.0052 (9) 0.0032 (9) −0.0010 (10)

Geometric parameters (Å, °)

Sn1—O1 2.0558 (15) C9—C10 1.382 (4)
Sn1—C6 2.121 (2) C9—H9A 0.9300
Sn1—C18 2.124 (2) C10—C11 1.389 (3)
Sn1—C12 2.127 (2) C10—H10A 0.9300
Cl1—C23 1.729 (2) C11—C12 1.398 (3)
O1—C19 1.311 (3) C11—H11A 0.9300
O2—C19 1.222 (3) C13—C14 1.389 (3)
O3—N1 1.185 (3) C13—C18 1.395 (3)
O4—N1 1.266 (3) C13—H13A 0.9300
O3X—N1 1.318 (12) C14—C15 1.383 (4)
O4X—N1 1.239 (10) C14—H14A 0.9300
N1—C22 1.469 (3) C15—C16 1.383 (4)
C1—C6 1.390 (3) C15—H15A 0.9300
C1—C2 1.393 (3) C16—C17 1.384 (3)
C1—H1A 0.9300 C16—H16A 0.9300
C2—C3 1.385 (4) C17—C18 1.400 (3)
C2—H2A 0.9300 C17—H17A 0.9300
C3—C4 1.383 (4) C19—C20 1.497 (3)
C3—H3A 0.9300 C20—C25 1.384 (3)
C4—C5 1.387 (4) C20—C21 1.387 (3)
C4—H4A 0.9300 C21—C22 1.385 (3)
C5—C6 1.394 (3) C21—H21A 0.9300
C5—H5A 0.9300 C22—C23 1.385 (4)
C7—C8 1.384 (4) C23—C24 1.387 (3)
C7—C12 1.398 (3) C24—C25 1.384 (3)
C7—H7A 0.9300 C24—H24A 0.9300
C8—C9 1.388 (4) C25—H25A 0.9300
C8—H8A 0.9300
O1—Sn1—C6 106.24 (7) C11—C10—H10A 120.2
O1—Sn1—C18 95.50 (7) C10—C11—C12 121.1 (2)
C6—Sn1—C18 114.46 (9) C10—C11—H11A 119.4
O1—Sn1—C12 111.17 (8) C12—C11—H11A 119.4
C6—Sn1—C12 116.64 (9) C7—C12—C11 118.5 (2)
C18—Sn1—C12 110.66 (9) C7—C12—Sn1 125.01 (18)
C19—O1—Sn1 111.47 (14) C11—C12—Sn1 116.48 (17)
O3—N1—O4X 80.8 (7) C14—C13—C18 120.8 (2)
O3—N1—O4 125.3 (3) C14—C13—H13A 119.6
O4X—N1—O4 77.0 (6) C18—C13—H13A 119.6
O3—N1—O3X 48.6 (5) C15—C14—C13 120.0 (2)
O4X—N1—O3X 117.3 (8) C15—C14—H14A 120.0
O4—N1—O3X 101.7 (5) C13—C14—H14A 120.0
O3—N1—C22 118.6 (2) C14—C15—C16 119.9 (2)
O4X—N1—C22 117.3 (6) C14—C15—H15A 120.1
O4—N1—C22 116.0 (2) C16—C15—H15A 120.1
O3X—N1—C22 118.5 (5) C15—C16—C17 120.5 (2)
C6—C1—C2 120.2 (2) C15—C16—H16A 119.8
C6—C1—H1A 119.9 C17—C16—H16A 119.8
C2—C1—H1A 119.9 C16—C17—C18 120.4 (2)
C3—C2—C1 120.1 (3) C16—C17—H17A 119.8
C3—C2—H2A 119.9 C18—C17—H17A 119.8
C1—C2—H2A 119.9 C13—C18—C17 118.5 (2)
C4—C3—C2 119.9 (2) C13—C18—Sn1 121.51 (17)
C4—C3—H3A 120.1 C17—C18—Sn1 120.00 (16)
C2—C3—H3A 120.1 O2—C19—O1 123.5 (2)
C3—C4—C5 120.3 (3) O2—C19—C20 122.8 (2)
C3—C4—H4A 119.9 O1—C19—C20 113.7 (2)
C5—C4—H4A 119.9 C25—C20—C21 119.6 (2)
C4—C5—C6 120.2 (3) C25—C20—C19 121.2 (2)
C4—C5—H5A 119.9 C21—C20—C19 119.3 (2)
C6—C5—H5A 119.9 C22—C21—C20 119.2 (2)
C1—C6—C5 119.3 (2) C22—C21—H21A 120.4
C1—C6—Sn1 119.58 (18) C20—C21—H21A 120.4
C5—C6—Sn1 121.11 (18) C21—C22—C23 121.5 (2)
C8—C7—C12 120.2 (2) C21—C22—N1 116.6 (2)
C8—C7—H7A 119.9 C23—C22—N1 121.9 (2)
C12—C7—H7A 119.9 C22—C23—C24 118.8 (2)
C7—C8—C9 120.6 (2) C22—C23—Cl1 123.18 (19)
C7—C8—H8A 119.7 C24—C23—Cl1 118.0 (2)
C9—C8—H8A 119.7 C25—C24—C23 120.0 (2)
C10—C9—C8 119.9 (2) C25—C24—H24A 120.0
C10—C9—H9A 120.1 C23—C24—H24A 120.0
C8—C9—H9A 120.1 C24—C25—C20 120.8 (2)
C9—C10—C11 119.7 (2) C24—C25—H25A 119.6
C9—C10—H10A 120.2 C20—C25—H25A 119.6
C6—Sn1—O1—C19 −65.58 (16) C14—C13—C18—Sn1 178.65 (19)
C18—Sn1—O1—C19 176.95 (15) C16—C17—C18—C13 −0.6 (4)
C12—Sn1—O1—C19 62.28 (16) C16—C17—C18—Sn1 −179.01 (18)
C6—C1—C2—C3 0.2 (3) O1—Sn1—C18—C13 174.44 (19)
C1—C2—C3—C4 0.6 (4) C6—Sn1—C18—C13 63.8 (2)
C2—C3—C4—C5 −0.8 (4) C12—Sn1—C18—C13 −70.5 (2)
C3—C4—C5—C6 0.2 (4) O1—Sn1—C18—C17 −7.14 (19)
C2—C1—C6—C5 −0.7 (3) C6—Sn1—C18—C17 −117.78 (18)
C2—C1—C6—Sn1 177.96 (16) C12—Sn1—C18—C17 107.94 (19)
C4—C5—C6—C1 0.5 (3) Sn1—O1—C19—O2 −0.7 (3)
C4—C5—C6—Sn1 −178.13 (17) Sn1—O1—C19—C20 179.81 (14)
O1—Sn1—C6—C1 −85.63 (18) O2—C19—C20—C25 −175.2 (2)
C18—Sn1—C6—C1 18.4 (2) O1—C19—C20—C25 4.3 (3)
C12—Sn1—C6—C1 149.83 (17) O2—C19—C20—C21 3.5 (3)
O1—Sn1—C6—C5 93.03 (18) O1—C19—C20—C21 −177.0 (2)
C18—Sn1—C6—C5 −162.96 (17) C25—C20—C21—C22 2.5 (3)
C12—Sn1—C6—C5 −31.5 (2) C19—C20—C21—C22 −176.3 (2)
C12—C7—C8—C9 −0.4 (4) C20—C21—C22—C23 0.5 (4)
C7—C8—C9—C10 0.7 (4) C20—C21—C22—N1 −179.7 (2)
C8—C9—C10—C11 −0.2 (4) O3—N1—C22—C21 37.1 (4)
C9—C10—C11—C12 −0.6 (4) O4X—N1—C22—C21 131.5 (8)
C8—C7—C12—C11 −0.5 (3) O4—N1—C22—C21 −140.2 (2)
C8—C7—C12—Sn1 −177.80 (18) O3X—N1—C22—C21 −18.8 (7)
C10—C11—C12—C7 1.0 (3) O3—N1—C22—C23 −143.2 (3)
C10—C11—C12—Sn1 178.53 (18) O4X—N1—C22—C23 −48.8 (8)
O1—Sn1—C12—C7 −69.0 (2) O4—N1—C22—C23 39.5 (3)
C6—Sn1—C12—C7 53.0 (2) O3X—N1—C22—C23 160.9 (7)
C18—Sn1—C12—C7 −173.79 (19) C21—C22—C23—C24 −2.8 (4)
O1—Sn1—C12—C11 113.67 (17) N1—C22—C23—C24 177.5 (2)
C6—Sn1—C12—C11 −124.34 (17) C21—C22—C23—Cl1 179.23 (19)
C18—Sn1—C12—C11 8.8 (2) N1—C22—C23—Cl1 −0.5 (4)
C18—C13—C14—C15 0.1 (4) C22—C23—C24—C25 2.0 (4)
C13—C14—C15—C16 −0.1 (4) Cl1—C23—C24—C25 −179.9 (2)
C14—C15—C16—C17 −0.2 (4) C23—C24—C25—C20 1.0 (4)
C15—C16—C17—C18 0.6 (4) C21—C20—C25—C24 −3.2 (4)
C14—C13—C18—C17 0.2 (4) C19—C20—C25—C24 175.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O2i 0.93 2.55 3.346 (3) 144
C17—H17A···O1 0.93 2.56 3.140 (3) 120

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6362).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Win, Y.-F., Choong, C.-S., Ha, S.-T., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, m535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Win, Y.-F., Choong, C.-S., Heng, M.-H., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, m561–m562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Win, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, m1530–m1531. [DOI] [PMC free article] [PubMed]
  10. Win, Y. F., Teoh, S. G., Vikneswaran, M. R., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, m695–m696. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103282X/hb6362sup1.cif

e-67-m1270-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103282X/hb6362Isup2.hkl

e-67-m1270-Isup2.hkl (254.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES