Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2315. doi: 10.1107/S1600536811031941

Ethyl (2E)-2-cyano-3-(1-methyl-1H-pyrrol-2-yl)prop-2-enoate

Abdullah M Asiri a,b,, Abdulrahman O Al-Youbi a, Khalid A Alamry a, Hassan M Faidallah a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3200670  PMID: 22058943

Abstract

The 15 non-H atoms of the title compound, C11H12N2O2, are approximately coplanar, the r.m.s. deviation being 0.145 Å. The major deviation from coplanarity is seen in a twist between the ethene (E configuration) and pyrrole rings [C—C—N—C torsion angle = −8.26 (18)°]. The carbonyl O and cyano N atoms are syn to each other. In the crystal, supra­molecular linear tapes linked by C—H⋯O and C—H⋯N inter­actions are further connected by C—H⋯π(pyrrole) inter­actions.

Related literature

For background to the biological activity of 2(1H)pyridone compounds, see: Aly et al. (1991); Al-Saadi et al. (2005); Rostom et al. (2011).graphic file with name e-67-o2315-scheme1.jpg

Experimental

Crystal data

  • C11H12N2O2

  • M r = 204.23

  • Triclinic, Inline graphic

  • a = 7.6145 (3) Å

  • b = 8.4964 (6) Å

  • c = 9.7023 (6) Å

  • α = 64.898 (7)°

  • β = 89.859 (4)°

  • γ = 71.517 (5)°

  • V = 532.69 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.10 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.955, T max = 1.000

  • 4049 measured reflections

  • 2336 independent reflections

  • 1912 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.106

  • S = 1.04

  • 2336 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031941/hb6354sup1.cif

e-67-o2315-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031941/hb6354Isup2.hkl

e-67-o2315-Isup2.hkl (114.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N2,C7—C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11a⋯O2i 0.98 2.31 3.241 (2) 158
C9—H9⋯N1ii 0.95 2.62 3.557 (2) 171
C11—H11b⋯Cg1iii 0.98 2.69 3.5332 (17) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The title compound (I) was studied in connection with the known biological activity of 2(1H)pyridone compounds (Aly et al., 1991; Al-Saadi et al., 2005; Rostom et al., 2011), and was prepared from the condensation of the N-methylpyrrole-2-carboxaldehyde with ethyl cyanoacetate during an attempt to prepare a 2(1H)pyridone derivative.

The molecular structure of (I), Fig. 1, is, to a first approximation, planar with the r.m.s. deviation for all 15 non-H atoms being 0.145 Å. The major deviations from the least-squares plane are 0.214 (2) and -0.337 (2) Å for the C9 and C11 atoms, respectively, reflecting a small twist between the ethene and pyrrole rings [the C11—N2—C7—C6 torsion angle = -8.26 (18) °]. The conformation about the ethene [C4═C7 = 1.3594 (18) Å] bond is E. The carbonyl-O and cyano-N atoms are syn to each other.

In the crystal packing, molecules are linked into chains via C—H···O interactions involving a N-bound methyl-H and carbonyl-O, Table 1. Chains are linked into a linear tape via C—H···N interactions involving a pyrrole-H and cyano-N, Fig. 2. The tapes are consolidated into the three-dimensional architecture by C—H···π interactions, Fig. 3, involving another N-bound methyl-H as the donor to the pyrrole ring.

Experimental

A mixture of the N-methylpyrrole-2-carboxaldehyde (1.0 g,1 0 mmol), 2-methylcyclohexanone (1.12 g, 10 mmol), ethyl cyanoacetate (1.1 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool, the formed precipitate was filtered, washed with water, dried and recrystallized from ethanol to form yellow blocks. M.pt. 420–421 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Supramolecular tape in (I) mediated by C—H···O and C—H···N interactions shown as orange and blue dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the unit-cell contents of (I). The C—H···O, C—H···N and C—H···π interactions shown as orange, blue and purple dashed lines, respectively.

Crystal data

C11H12N2O2 Z = 2
Mr = 204.23 F(000) = 216
Triclinic, P1 Dx = 1.273 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.6145 (3) Å Cell parameters from 2042 reflections
b = 8.4964 (6) Å θ = 2.3–29.2°
c = 9.7023 (6) Å µ = 0.09 mm1
α = 64.898 (7)° T = 100 K
β = 89.859 (4)° Block, yellow
γ = 71.517 (5)° 0.30 × 0.25 × 0.10 mm
V = 532.69 (5) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2336 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1912 reflections with I > 2σ(I)
mirror Rint = 0.030
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.4°
ω scans h = −8→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −8→11
Tmin = 0.955, Tmax = 1.000 l = −12→11
4049 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.043P)2 + 0.1378P] where P = (Fo2 + 2Fc2)/3
2336 reflections (Δ/σ)max < 0.001
138 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.76560 (13) 0.39008 (13) 0.75762 (10) 0.0210 (2)
O2 0.94151 (13) 0.24631 (13) 0.62962 (11) 0.0240 (2)
N2 0.31730 (15) 0.98384 (16) 0.40412 (13) 0.0195 (3)
C1 0.7806 (2) 0.2663 (2) 1.02981 (18) 0.0367 (4)
H1A 0.8394 0.1579 1.1287 0.055*
H1B 0.6452 0.2928 1.0165 0.055*
H1C 0.8049 0.3737 1.0280 0.055*
C2 0.8606 (2) 0.22752 (19) 0.90199 (16) 0.0239 (3)
H2A 0.9970 0.2036 0.9128 0.029*
H2B 0.8402 0.1170 0.9045 0.029*
C3 0.82056 (17) 0.37907 (18) 0.63059 (15) 0.0178 (3)
C4 0.71681 (17) 0.54814 (18) 0.48907 (15) 0.0177 (3)
C5 0.77316 (18) 0.54540 (18) 0.34926 (16) 0.0198 (3)
C6 0.57429 (17) 0.68970 (18) 0.49404 (15) 0.0176 (3)
H6 0.5455 0.6706 0.5940 0.021*
C7 0.46245 (17) 0.86137 (18) 0.37221 (15) 0.0185 (3)
C8 0.47051 (19) 0.95100 (19) 0.21554 (16) 0.0225 (3)
H8 0.5559 0.9015 0.1603 0.027*
C9 0.3314 (2) 1.1258 (2) 0.15416 (17) 0.0268 (3)
H9 0.3051 1.2171 0.0499 0.032*
C10 0.23870 (19) 1.14206 (19) 0.27246 (16) 0.0241 (3)
H10 0.1364 1.2471 0.2631 0.029*
C11 0.25065 (19) 0.9441 (2) 0.55193 (16) 0.0230 (3)
H11A 0.1556 1.0568 0.5462 0.034*
H11B 0.3559 0.9013 0.6323 0.034*
H11C 0.1956 0.8473 0.5767 0.034*
N1 0.81855 (17) 0.53952 (17) 0.23809 (14) 0.0273 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0231 (5) 0.0179 (5) 0.0169 (5) −0.0016 (4) 0.0022 (4) −0.0073 (4)
O2 0.0218 (5) 0.0215 (5) 0.0278 (6) −0.0014 (4) 0.0028 (4) −0.0145 (4)
N2 0.0176 (5) 0.0198 (6) 0.0224 (6) −0.0041 (5) 0.0011 (4) −0.0122 (5)
C1 0.0394 (9) 0.0389 (10) 0.0209 (8) −0.0062 (8) 0.0046 (7) −0.0089 (7)
C2 0.0269 (7) 0.0183 (7) 0.0187 (7) −0.0043 (6) −0.0005 (6) −0.0038 (6)
C3 0.0163 (6) 0.0193 (7) 0.0206 (7) −0.0061 (5) 0.0036 (5) −0.0116 (6)
C4 0.0167 (6) 0.0202 (7) 0.0194 (7) −0.0076 (5) 0.0035 (5) −0.0108 (6)
C5 0.0183 (6) 0.0179 (7) 0.0225 (7) −0.0044 (5) 0.0019 (5) −0.0098 (6)
C6 0.0169 (6) 0.0211 (7) 0.0190 (7) −0.0084 (5) 0.0037 (5) −0.0115 (5)
C7 0.0174 (6) 0.0190 (7) 0.0208 (7) −0.0054 (5) 0.0019 (5) −0.0111 (6)
C8 0.0254 (7) 0.0231 (7) 0.0204 (7) −0.0069 (6) 0.0011 (5) −0.0120 (6)
C9 0.0305 (8) 0.0234 (8) 0.0213 (7) −0.0055 (6) −0.0048 (6) −0.0082 (6)
C10 0.0211 (7) 0.0194 (7) 0.0282 (8) −0.0012 (6) −0.0045 (6) −0.0115 (6)
C11 0.0199 (7) 0.0251 (8) 0.0283 (8) −0.0059 (6) 0.0061 (6) −0.0172 (6)
N1 0.0325 (7) 0.0267 (7) 0.0234 (7) −0.0074 (6) 0.0076 (5) −0.0139 (5)

Geometric parameters (Å, °)

O1—C3 1.3316 (16) C4—C5 1.4290 (19)
O1—C2 1.4570 (16) C5—N1 1.1482 (17)
O2—C3 1.2128 (15) C6—C7 1.4158 (18)
N2—C10 1.3542 (18) C6—H6 0.9500
N2—C7 1.3938 (17) C7—C8 1.3933 (19)
N2—C11 1.4568 (18) C8—C9 1.392 (2)
C1—C2 1.494 (2) C8—H8 0.9500
C1—H1A 0.9800 C9—C10 1.380 (2)
C1—H1B 0.9800 C9—H9 0.9500
C1—H1C 0.9800 C10—H10 0.9500
C2—H2A 0.9900 C11—H11A 0.9800
C2—H2B 0.9900 C11—H11B 0.9800
C3—C4 1.4783 (18) C11—H11C 0.9800
C4—C6 1.3594 (18)
C3—O1—C2 115.44 (10) N1—C5—C4 178.60 (15)
C10—N2—C7 108.92 (11) C4—C6—C7 129.52 (13)
C10—N2—C11 125.09 (11) C4—C6—H6 115.2
C7—N2—C11 125.83 (11) C7—C6—H6 115.2
C2—C1—H1A 109.5 C8—C7—N2 106.74 (11)
C2—C1—H1B 109.5 C8—C7—C6 133.53 (12)
H1A—C1—H1B 109.5 N2—C7—C6 119.56 (12)
C2—C1—H1C 109.5 C9—C8—C7 107.97 (13)
H1A—C1—H1C 109.5 C9—C8—H8 126.0
H1B—C1—H1C 109.5 C7—C8—H8 126.0
O1—C2—C1 107.45 (11) C10—C9—C8 107.48 (13)
O1—C2—H2A 110.2 C10—C9—H9 126.3
C1—C2—H2A 110.2 C8—C9—H9 126.3
O1—C2—H2B 110.2 N2—C10—C9 108.89 (12)
C1—C2—H2B 110.2 N2—C10—H10 125.6
H2A—C2—H2B 108.5 C9—C10—H10 125.6
O2—C3—O1 124.42 (12) N2—C11—H11A 109.5
O2—C3—C4 123.32 (12) N2—C11—H11B 109.5
O1—C3—C4 112.26 (11) H11A—C11—H11B 109.5
C6—C4—C5 123.65 (12) N2—C11—H11C 109.5
C6—C4—C3 121.69 (12) H11A—C11—H11C 109.5
C5—C4—C3 114.60 (11) H11B—C11—H11C 109.5
C3—O1—C2—C1 179.92 (11) C10—N2—C7—C6 176.08 (11)
C2—O1—C3—O2 −0.45 (18) C11—N2—C7—C6 −8.26 (18)
C2—O1—C3—C4 179.47 (10) C4—C6—C7—C8 −8.2 (2)
O2—C3—C4—C6 175.93 (12) C4—C6—C7—N2 177.34 (12)
O1—C3—C4—C6 −3.99 (17) N2—C7—C8—C9 0.03 (15)
O2—C3—C4—C5 −1.38 (18) C6—C7—C8—C9 −174.98 (14)
O1—C3—C4—C5 178.70 (10) C7—C8—C9—C10 −0.29 (16)
C5—C4—C6—C7 −4.1 (2) C7—N2—C10—C9 −0.43 (15)
C3—C4—C6—C7 178.85 (12) C11—N2—C10—C9 −176.13 (12)
C10—N2—C7—C8 0.24 (14) C8—C9—C10—N2 0.44 (16)
C11—N2—C7—C8 175.90 (11)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2,C7—C10 ring.
D—H···A D—H H···A D···A D—H···A
C11—H11a···O2i 0.98 2.31 3.241 (2) 158
C9—H9···N1ii 0.95 2.62 3.557 (2) 171
C11—H11b···Cg1iii 0.98 2.69 3.5332 (17) 144

Symmetry codes: (i) x−1, y+1, z; (ii) −x+1, −y+2, −z; (iii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6354).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Al-Saadi, S. M., Rostom, S. A. F. & Faid Allah, H. M. (2005). Alex. J. Pharm. Sci, 19, 15–21.
  3. Aly, A. S., El-Ezabawy, S. R. & Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827–834.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res doi:10.1007/s00044-010-9469-0.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031941/hb6354sup1.cif

e-67-o2315-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031941/hb6354Isup2.hkl

e-67-o2315-Isup2.hkl (114.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES