Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2445. doi: 10.1107/S1600536811033368

1-Benzoyl-3-(pyridin-2-yl)-1H-pyrazole

Alexander H Shelton a, Andrew Stephenson a, Michael D Ward a, Mohammad B Kassim b,c,*
PMCID: PMC3200672  PMID: 22059016

Abstract

In the title compound, C15H11N3O, the dihedral angle betwen the heterocyclic rings is 9.23 (5)° and the dihedral angle between the benzoyl and pyrazole rings is 58.64 (5)°. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R 2 2(10) loops. The dimers stack into a column running parallel to the b-axis direction.

Related literature

For related structures and background, see: Jones et al. (1997); Adams et al. (2006); Al-abbasi & Kassim (2011). For reference bond lengths, see: Allen et al. (1987).graphic file with name e-67-o2445-scheme1.jpg

Experimental

Crystal data

  • C15H11N3O

  • M r = 249.27

  • Monoclinic, Inline graphic

  • a = 10.6325 (11) Å

  • b = 5.7775 (6) Å

  • c = 19.572 (2) Å

  • β = 98.426 (6)°

  • V = 1189.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.982, T max = 0.991

  • 10450 measured reflections

  • 2735 independent reflections

  • 2532 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.097

  • S = 1.00

  • 2735 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033368/hb6370sup1.cif

e-67-o2445-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033368/hb6370Isup2.hkl

e-67-o2445-Isup2.hkl (134.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033368/hb6370Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.44 3.3720 (13) 175

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge Universiti Kebangsaan Malaysia for the UKM-GUP-BTT-07–30–190 and UKM-OUP-TK-16–73/2010 & 2011 grants and sabbatical leave for MBK at the University of Sheffield. They also thank the RSC, UK, for financial support from the Leverhulme trust.

supplementary crystallographic information

Comment

The starting material, 3-(2-pyridyl)pyrazole, is a bidentate ligand which is commonly used in coordination chemistry (Jones et al. 1997 & Adams et al. 2006). The title compound is made up of a 3-(2-pyridyl)pyrazole and benzoyl fragments. This new compound has a potential to be applied as a tridentate ligand (ONN) involving the O atom on the carbonyl group and the N atom on the pyrazole and pyridine rings.

In the crystal structure, the mean planes of acetamide (O1/N1/C1/C7) and the benzene (C1/C2/C3/C4/C5/C6) fragments make a dihedral angle of 49.54 (5)° with each other. The mean planes of the pyrazole and pyridyl rings are slightly twisted and make a dihedral 9.23 (5)°. The C7—O1 bond length 1.2117 (12) is slightly longer that of the C=O found in another benzoyl derivative, 1-ethyl-1-methyl-3-(2-nitrobenzoyl)thiourea (Al-abbasi & Kassim, 2011). Other bond lengths and angles within the compounds are in the normal ranges (Allen et al. 1987).

A C—H···O intermolecular hydrogen bond links adjacent molecules into centrosymmetric dimers forming a one dimensional column parallel to the b-axis.

Experimental

3-(2-pyridyl)pyrazole (0.728 g, 5.0 mmol) was deprotonated by reacting with NaH (60% in mineral oil) in 30 ml of dry THF under N2 at room temperature for 2 h. Then, benzoyl chloride (0.702 g, 5.0 mmol) was added slowly to the mixture and the temperature was brought to reflux and left stirring for 4 hrs. The solvent was removed and the residue was re-dissolved in a minimum volume of DCM, washed 3 times with 30 ml of distilled water. The organic fraction was collected and dried with MgSO4, filtered and the solvent was removed in vacuo. Slow evaporation of acetone/DCM solution of the residue afforded colourless blocks of (I). Yield 78%.

Refinement

All H atoms were positioned geometrically with C—H bond lengths in the range of 0.93 - 0.97 Å and refined in the riding model approximation with Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound viewing down the b-axis showing the intermolecular hydrogen bonds C—H···O (-x, 3 - y, -z).

Crystal data

C15H11N3O F(000) = 520
Mr = 249.27 Dx = 1.392 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7032 reflections
a = 10.6325 (11) Å θ = 4.7–55.0°
b = 5.7775 (6) Å µ = 0.09 mm1
c = 19.572 (2) Å T = 296 K
β = 98.426 (6)° Block, colourless
V = 1189.3 (2) Å3 0.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 2735 independent reflections
Radiation source: fine-focus sealed tube 2532 reflections with I > 2σ(I)
graphite Rint = 0.023
ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −13→13
Tmin = 0.982, Tmax = 0.991 k = −7→7
10450 measured reflections l = −25→25

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.430P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2735 reflections Δρmax = 0.35 e Å3
173 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.025 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.13720 (7) 1.43117 (13) 0.06519 (4) 0.02310 (19)
N1 0.16990 (8) 1.10288 (14) 0.00732 (4) 0.01636 (19)
N2 0.24411 (8) 0.91307 (15) −0.00018 (4) 0.01622 (19)
N3 0.22475 (8) 0.59436 (16) −0.15957 (4) 0.0200 (2)
C4 0.43069 (10) 1.04513 (19) 0.25014 (5) 0.0206 (2)
H4 0.4799 1.0072 0.2919 0.025*
C3 0.34100 (10) 0.88896 (18) 0.21845 (5) 0.0187 (2)
H3 0.3304 0.7468 0.2392 0.022*
C2 0.26702 (9) 0.94408 (18) 0.15592 (5) 0.0172 (2)
H2 0.2096 0.8371 0.1338 0.021*
C1 0.27989 (9) 1.16160 (17) 0.12676 (5) 0.0162 (2)
C7 0.19083 (9) 1.24595 (17) 0.06590 (5) 0.0169 (2)
C10 0.20214 (9) 0.83729 (17) −0.06333 (5) 0.0158 (2)
C11 0.26054 (9) 0.63418 (17) −0.09172 (5) 0.0163 (2)
C15 0.27577 (11) 0.4098 (2) −0.18654 (5) 0.0231 (2)
H15 0.2519 0.3799 −0.2333 0.028*
C14 0.36167 (10) 0.26093 (19) −0.14932 (6) 0.0231 (2)
H14 0.3938 0.1344 −0.1705 0.028*
C5 0.44676 (10) 1.25791 (19) 0.21942 (5) 0.0209 (2)
H5 0.5091 1.3597 0.2397 0.025*
C6 0.36981 (10) 1.31859 (18) 0.15852 (5) 0.0189 (2)
H6 0.3781 1.4634 0.1389 0.023*
C13 0.39894 (10) 0.30481 (19) −0.07940 (6) 0.0216 (2)
H13 0.4570 0.2089 −0.0529 0.026*
C12 0.34759 (9) 0.49456 (18) −0.05019 (5) 0.0186 (2)
H12 0.3708 0.5284 −0.0036 0.022*
C9 0.10122 (9) 0.97734 (18) −0.09703 (5) 0.0187 (2)
H9 0.0569 0.9577 −0.1413 0.022*
C8 0.08350 (9) 1.14563 (18) −0.05088 (5) 0.0185 (2)
H8 0.0247 1.2657 −0.0573 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0271 (4) 0.0165 (4) 0.0252 (4) 0.0037 (3) 0.0025 (3) −0.0009 (3)
N1 0.0175 (4) 0.0150 (4) 0.0165 (4) 0.0007 (3) 0.0020 (3) 0.0007 (3)
N2 0.0181 (4) 0.0141 (4) 0.0167 (4) 0.0002 (3) 0.0031 (3) −0.0001 (3)
N3 0.0232 (4) 0.0211 (5) 0.0159 (4) −0.0032 (3) 0.0029 (3) −0.0016 (3)
C4 0.0183 (5) 0.0258 (5) 0.0175 (5) 0.0038 (4) 0.0021 (4) −0.0022 (4)
C3 0.0211 (5) 0.0173 (5) 0.0184 (5) 0.0032 (4) 0.0055 (4) 0.0011 (4)
C2 0.0183 (5) 0.0155 (5) 0.0181 (5) −0.0010 (4) 0.0039 (4) −0.0024 (4)
C1 0.0181 (4) 0.0162 (5) 0.0150 (4) 0.0003 (4) 0.0047 (3) −0.0022 (4)
C7 0.0187 (5) 0.0151 (5) 0.0177 (4) −0.0018 (4) 0.0050 (4) −0.0003 (4)
C10 0.0167 (4) 0.0161 (5) 0.0148 (4) −0.0027 (4) 0.0025 (3) 0.0014 (4)
C11 0.0162 (4) 0.0168 (5) 0.0162 (4) −0.0035 (4) 0.0035 (3) −0.0005 (4)
C15 0.0265 (5) 0.0248 (5) 0.0189 (5) −0.0055 (4) 0.0066 (4) −0.0049 (4)
C14 0.0217 (5) 0.0205 (5) 0.0290 (5) −0.0035 (4) 0.0105 (4) −0.0065 (4)
C5 0.0181 (5) 0.0233 (5) 0.0216 (5) −0.0034 (4) 0.0038 (4) −0.0062 (4)
C6 0.0218 (5) 0.0161 (5) 0.0198 (5) −0.0024 (4) 0.0066 (4) −0.0022 (4)
C13 0.0170 (5) 0.0200 (5) 0.0281 (5) −0.0009 (4) 0.0039 (4) 0.0006 (4)
C12 0.0179 (4) 0.0198 (5) 0.0178 (5) −0.0027 (4) 0.0020 (3) −0.0006 (4)
C9 0.0179 (5) 0.0209 (5) 0.0168 (4) −0.0008 (4) 0.0010 (4) 0.0019 (4)
C8 0.0169 (4) 0.0190 (5) 0.0192 (5) 0.0000 (4) 0.0010 (4) 0.0033 (4)

Geometric parameters (Å, °)

O1—C7 1.2116 (12) C10—C9 1.4260 (14)
N1—N2 1.3713 (12) C10—C11 1.4740 (14)
N1—C8 1.3768 (12) C11—C12 1.3955 (14)
N1—C7 1.4045 (13) C15—C14 1.3819 (16)
N2—C10 1.3255 (12) C15—H15 0.9300
N3—C15 1.3393 (14) C14—C13 1.3910 (15)
N3—C11 1.3465 (12) C14—H14 0.9300
C4—C5 1.3900 (15) C5—C6 1.3883 (14)
C4—C3 1.3910 (15) C5—H5 0.9300
C4—H4 0.9300 C6—H6 0.9300
C3—C2 1.3913 (14) C13—C12 1.3850 (15)
C3—H3 0.9300 C13—H13 0.9300
C2—C1 1.3952 (14) C12—H12 0.9300
C2—H2 0.9300 C9—C8 1.3589 (15)
C1—C6 1.3961 (14) C9—H9 0.9300
C1—C7 1.4908 (13) C8—H8 0.9300
N2—N1—C8 112.31 (8) C12—C11—C10 121.39 (9)
N2—N1—C7 122.22 (8) N3—C15—C14 124.21 (10)
C8—N1—C7 125.20 (9) N3—C15—H15 117.9
C10—N2—N1 104.10 (8) C14—C15—H15 117.9
C15—N3—C11 116.90 (9) C15—C14—C13 118.44 (10)
C5—C4—C3 120.04 (9) C15—C14—H14 120.8
C5—C4—H4 120.0 C13—C14—H14 120.8
C3—C4—H4 120.0 C6—C5—C4 120.02 (10)
C4—C3—C2 120.40 (10) C6—C5—H5 120.0
C4—C3—H3 119.8 C4—C5—H5 120.0
C2—C3—H3 119.8 C5—C6—C1 119.82 (10)
C3—C2—C1 119.29 (9) C5—C6—H6 120.1
C3—C2—H2 120.4 C1—C6—H6 120.1
C1—C2—H2 120.4 C12—C13—C14 118.53 (10)
C2—C1—C6 120.32 (9) C12—C13—H13 120.7
C2—C1—C7 122.17 (9) C14—C13—H13 120.7
C6—C1—C7 117.18 (9) C13—C12—C11 119.02 (9)
O1—C7—N1 119.50 (9) C13—C12—H12 120.5
O1—C7—C1 122.72 (9) C11—C12—H12 120.5
N1—C7—C1 117.77 (9) C8—C9—C10 105.47 (9)
N2—C10—C9 111.81 (9) C8—C9—H9 127.3
N2—C10—C11 120.77 (9) C10—C9—H9 127.3
C9—C10—C11 127.41 (9) C9—C8—N1 106.31 (9)
N3—C11—C12 122.90 (9) C9—C8—H8 126.8
N3—C11—C10 115.72 (9) N1—C8—H8 126.8

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1i 0.93 2.44 3.3720 (13) 175

Symmetry codes: (i) −x, −y+3, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6370).

References

  1. Adams, H., Alsindi, W. Z., Davies, G. M., Duriska, M. B., Easun, T. L., Fenton, H. E., Herrera, J.-M., George, M. W., Ronayne, K. L., Sun, X.-Z., Towrie, M. & Ward, M. D. (2006). Dalton Trans. pp. 39–50. [DOI] [PubMed]
  2. Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611. [DOI] [PMC free article] [PubMed]
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  4. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Jones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). Inorg. Chem. 36, 10–18.
  6. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033368/hb6370sup1.cif

e-67-o2445-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033368/hb6370Isup2.hkl

e-67-o2445-Isup2.hkl (134.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033368/hb6370Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES