Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 6;67(Pt 9):m1194. doi: 10.1107/S1600536811030777

Hexaaqua­magnesium bis­(3-carb­oxy-4-hy­droxy­benzene­sulfonate) dihydrate

Graham Smith a,*, Urs D Wermuth a, Michael L Williams b
PMCID: PMC3200685  PMID: 22065818

Abstract

In the crystal structure of the title compound, [Mg(H2O)6](C7H5O6S)2·2H2O, the octa­hedral complex cation lies on an inversion centre and is hydrogen bonded through the coordinated water molecules to the substituted benzene­sulfonate monoanions and the water mol­ecules of solvation. These inter­actions together with a carb­oxy­lic acid O—H⋯O(sulfonate) association give a three-dimensional structure.

Related literature

For the structure of the isotypic MnII, CuII and CoII dihydrate complexes, see: Ma et al. (2003a ,d ); Abdelhak et al. (2005). For the structures of the analogous CoII, NiII and ZnII tetra­hydrate complexes, see: Ma et al. (2003b ,c ,e ).graphic file with name e-67-m1194-scheme1.jpg

Experimental

Crystal data

  • [Mg(H2O)6](C7H5O6S)2·2H2O

  • M r = 602.78

  • Triclinic, Inline graphic

  • a = 6.8694 (4) Å

  • b = 6.9069 (4) Å

  • c = 14.3950 (8) Å

  • α = 77.472 (5)°

  • β = 78.120 (4)°

  • γ = 70.131 (5)°

  • V = 620.51 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.40 × 0.12 × 0.10 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.96, T max = 0.99

  • 8134 measured reflections

  • 2899 independent reflections

  • 2553 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.086

  • S = 1.14

  • 2899 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030777/tk2770sup1.cif

e-67-m1194-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030777/tk2770Isup2.hkl

e-67-m1194-Isup2.hkl (139.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O12 0.85 (2) 1.87 (2) 2.632 (2) 149 (2)
O11—H11⋯O53i 0.79 (3) 1.92 (3) 2.678 (2) 161 (3)
O1W—H11W⋯O12ii 0.85 (2) 1.93 (2) 2.779 (2) 175 (2)
O1W—H12W⋯O51 0.82 (3) 2.00 (3) 2.824 (2) 175 (2)
O2W—H21W⋯O4Wiii 0.82 (3) 1.91 (3) 2.728 (3) 173 (3)
O3W—H31W⋯O51iv 0.75 (3) 2.10 (3) 2.850 (2) 171 (3)
O3W—H32W⋯O4Wv 0.89 (3) 1.87 (3) 2.748 (3) 167 (2)
O4W—H41W⋯O53vi 0.79 (3) 2.04 (3) 2.803 (2) 162 (3)
O4W—H42W⋯O52 0.84 (3) 1.88 (3) 2.717 (2) 178 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology, and Griffith University.

supplementary crystallographic information

Comment

The title compound, [Mg(H2O)6]2+ 2(C7H5O6S-). 2(H2O) was obtained from the reaction of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) with MgCO3 and the structure is reported here In the structure of this compound (Fig. 1), the octahedral cationic Mg complex cations lie on crystallographic inversion centres [Mg—O, 2.0396 (17)–2.0664 (19) Å]. This complex is isomorphous with other divalent first transition metal–5-SSA complexes with the same basic dihydrate formula [M(H2O)6] 2(5-SSA-). 2(H2O), [M = Mn (Ma et al., 2003a); Co (Abdelhak et al., 2005); Cu (Ma et al., 2003d)]. These complexes are also similar to the tetrahydrate analogues {[M(H2O)6] 2(5-SSA-). 4(H2O)}, having triclinic unit cells with comparable cell parameters e.g. CoII (Ma et al., 2003b) and Ni (Ma et al., 2003c) and Zn (Ma et al., 2003e).

The coordinated water molecules are involved in a number of O—H···O hydrogen-bonding interactions with sulfonate and carboxylate O acceptors of the uncoordinated 5-SSA monoanions and the water molecules of solvation (Table 1) and together with a carboxylic acid OH···Osulfonate hydrogen bond form a three-dimensional structure (Fig. 2). In the anion there is the intramolecular cyclic phenol OH···Ocarboxyl hydrogen bond which is invariably present in this monoanion (Ma et al., 2003a). One H of one of the coordinated water molecules (H22W) has no reasonable acceptor in the structure.

Experimental

The title compound was synthesized by heating 218 mg (1 mmol) of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid) with an excess of MgCO3 in 50 ml of 1:1 ethanol–water under reflux for 10 min. After completion of the reaction, the unreacted MgCO3 was removed by filtration and the solution was allowed evaporate to incipient dryness at room temperature, giving small colourless prisms of the title compound from which a specimen was cleaved for the X-ray analysis.

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions [C–H = 0.93 Å and with Uiso(H) = 1.2Ueq(C), using a riding-model approximation.

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom naming scheme for the cation, anion and water species in the asymmetric unit of the title compound. Inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 50% probability level. For symmetry code (i): -x, -y, -z.

Fig. 2.

Fig. 2.

The hydrogen-bonding interactions in the title compound viewed down a. For symmetry codes, see Table 1.

Crystal data

[Mg(H2O)6](C7H5O6S)2·2H2O Z = 1
Mr = 602.78 F(000) = 314
Triclinic, P1 Dx = 1.613 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8694 (4) Å Cell parameters from 4714 reflections
b = 6.9069 (4) Å θ = 3.2–28.9°
c = 14.3950 (8) Å µ = 0.33 mm1
α = 77.472 (5)° T = 200 K
β = 78.120 (4)° Prism, colourless
γ = 70.131 (5)° 0.40 × 0.12 × 0.10 mm
V = 620.51 (6) Å3

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 2899 independent reflections
Radiation source: Enhance (Mo) X-ray source 2553 reflections with I > 2σ(I)
graphite Rint = 0.023
ω scans θmax = 28.8°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) h = −9→9
Tmin = 0.96, Tmax = 0.99 k = −9→8
8134 measured reflections l = −19→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.10P] where P = (Fo2 + 2Fc2)/3
2899 reflections (Δ/σ)max = 0.001
209 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S5 0.32291 (6) 0.27288 (6) 0.24107 (3) 0.0205 (1)
O2 −0.30636 (17) 0.30257 (19) 0.58938 (9) 0.0293 (4)
O11 0.33290 (17) 0.10533 (19) 0.60809 (9) 0.0282 (4)
O12 0.00797 (17) 0.16915 (18) 0.68922 (8) 0.0285 (3)
O51 0.21125 (18) 0.34405 (17) 0.15798 (8) 0.0282 (3)
O52 0.4428 (2) 0.4036 (2) 0.24880 (9) 0.0358 (4)
O53 0.45513 (17) 0.05481 (18) 0.24189 (8) 0.0288 (3)
C1 0.0565 (2) 0.2280 (2) 0.51806 (10) 0.0168 (4)
C2 −0.1584 (2) 0.2911 (2) 0.51141 (11) 0.0198 (4)
C3 −0.2240 (2) 0.3455 (2) 0.42131 (12) 0.0235 (5)
C4 −0.0799 (2) 0.3391 (2) 0.33881 (11) 0.0223 (4)
C5 0.1338 (2) 0.2784 (2) 0.34503 (11) 0.0182 (4)
C6 0.2005 (2) 0.2238 (2) 0.43408 (11) 0.0176 (4)
C11 0.1284 (2) 0.1655 (2) 0.61309 (11) 0.0193 (4)
Mg1 0.00000 0.00000 0.00000 0.0200 (2)
O1W 0.0127 (2) 0.0693 (2) 0.12890 (9) 0.0323 (4)
O2W 0.3193 (2) −0.1459 (2) −0.01676 (11) 0.0338 (4)
O3W 0.0515 (2) 0.27534 (19) −0.06749 (9) 0.0307 (4)
O4W 0.5409 (2) 0.7353 (2) 0.13401 (10) 0.0313 (4)
H2 −0.244 (3) 0.264 (3) 0.6383 (17) 0.045 (6)*
H3 −0.36580 0.38640 0.41680 0.0280*
H4 −0.12490 0.37510 0.27890 0.0270*
H6 0.34260 0.18390 0.43800 0.0210*
H11 0.369 (4) 0.070 (3) 0.6595 (18) 0.049 (7)*
H11W −0.002 (3) −0.002 (3) 0.1845 (18) 0.049 (6)*
H12W 0.067 (4) 0.155 (4) 0.1343 (17) 0.050 (7)*
H21W 0.395 (4) −0.180 (4) 0.025 (2) 0.061 (8)*
H22W 0.383 (5) −0.180 (4) −0.068 (2) 0.083 (10)*
H31W −0.028 (4) 0.370 (4) −0.0898 (17) 0.044 (7)*
H32W 0.177 (4) 0.293 (4) −0.0885 (17) 0.055 (7)*
H41W 0.490 (4) 0.826 (4) 0.1655 (18) 0.058 (8)*
H42W 0.514 (4) 0.631 (4) 0.1686 (18) 0.055 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S5 0.0224 (2) 0.0251 (2) 0.0139 (2) −0.0083 (2) −0.0034 (1) −0.0009 (1)
O2 0.0175 (6) 0.0402 (7) 0.0254 (7) −0.0054 (5) 0.0016 (5) −0.0055 (5)
O11 0.0199 (6) 0.0418 (7) 0.0185 (6) −0.0022 (5) −0.0075 (5) −0.0035 (5)
O12 0.0263 (6) 0.0358 (6) 0.0176 (6) −0.0060 (5) −0.0002 (5) −0.0007 (5)
O51 0.0354 (6) 0.0288 (6) 0.0177 (6) −0.0063 (5) −0.0106 (5) 0.0022 (4)
O52 0.0433 (7) 0.0494 (8) 0.0254 (6) −0.0322 (6) −0.0010 (6) −0.0027 (5)
O53 0.0267 (6) 0.0321 (6) 0.0212 (6) 0.0025 (5) −0.0061 (5) −0.0074 (5)
C1 0.0171 (7) 0.0134 (6) 0.0189 (7) −0.0034 (5) −0.0042 (6) −0.0014 (5)
C2 0.0177 (7) 0.0166 (7) 0.0237 (8) −0.0040 (6) −0.0007 (6) −0.0048 (6)
C3 0.0154 (7) 0.0246 (8) 0.0301 (9) −0.0028 (6) −0.0067 (6) −0.0058 (6)
C4 0.0218 (7) 0.0224 (7) 0.0223 (8) −0.0029 (6) −0.0105 (6) −0.0025 (6)
C5 0.0192 (7) 0.0174 (7) 0.0173 (7) −0.0052 (6) −0.0030 (6) −0.0017 (5)
C6 0.0152 (7) 0.0177 (7) 0.0192 (7) −0.0038 (5) −0.0044 (6) −0.0016 (5)
C11 0.0206 (7) 0.0168 (7) 0.0190 (7) −0.0033 (6) −0.0036 (6) −0.0029 (6)
Mg1 0.0227 (4) 0.0233 (4) 0.0142 (4) −0.0084 (3) −0.0045 (3) 0.0007 (3)
O1W 0.0492 (8) 0.0395 (7) 0.0156 (6) −0.0245 (6) −0.0067 (5) −0.0005 (5)
O2W 0.0254 (6) 0.0455 (8) 0.0245 (7) −0.0053 (6) −0.0017 (6) −0.0042 (6)
O3W 0.0247 (6) 0.0250 (6) 0.0371 (7) −0.0078 (5) −0.0063 (6) 0.0079 (5)
O4W 0.0300 (7) 0.0287 (7) 0.0357 (7) −0.0114 (6) −0.0048 (6) −0.0022 (6)

Geometric parameters (Å, °)

S5—O51 1.4584 (15) O2W—H21W 0.82 (3)
S5—O52 1.4466 (17) O2W—H22W 0.82 (3)
S5—O53 1.4699 (15) O3W—H32W 0.89 (3)
S5—C5 1.7661 (19) O3W—H31W 0.75 (3)
Mg1—O1W 2.0396 (17) O4W—H42W 0.84 (3)
Mg1—O2W 2.0664 (19) O4W—H41W 0.79 (3)
Mg1—O3W 2.0494 (17) C1—C11 1.476 (2)
Mg1—O1Wi 2.0396 (17) C1—C6 1.394 (2)
Mg1—O2Wi 2.0664 (19) C1—C2 1.408 (2)
Mg1—O3Wi 2.0494 (17) C2—C3 1.393 (2)
O2—C2 1.347 (2) C3—C4 1.379 (2)
O11—C11 1.314 (2) C4—C5 1.399 (2)
O12—C11 1.229 (2) C5—C6 1.382 (2)
O2—H2 0.85 (2) C3—H3 0.9300
O11—H11 0.79 (3) C4—H4 0.9300
O1W—H11W 0.85 (2) C6—H6 0.9300
O1W—H12W 0.82 (3)
S5···H12W 2.96 (3) O1W···H22Wi 2.83 (4)
S5···H42W 3.08 (3) O2···H3v 2.5300
S5···H11ii 2.92 (2) O2W···H32W 2.87 (3)
S5···H22Wiii 2.91 (3) O3W···H12W 2.86 (2)
O1W···O2W 2.907 (3) O4W···H32Wx 1.87 (3)
O1W···O3W 2.879 (2) O4W···H21Wxi 1.91 (3)
O1W···O51 2.824 (2) O11···H6 2.3800
O1W···O12iv 2.779 (2) O11···H6ii 2.5200
O1W···O2Wi 2.900 (3) O12···H11Wiv 1.93 (2)
O1W···O3Wi 2.903 (2) O12···H2 1.87 (2)
O2···C3v 3.324 (3) O51···H4 2.5600
O2···O11vi 3.151 (3) O51···H31Wix 2.10 (3)
O2···O12 2.632 (2) O51···H22Wiii 2.78 (3)
O2···O52vii 3.207 (3) O51···H12W 2.00 (3)
O2W···O3Wi 2.926 (3) O52···H6 2.8900
O2W···O1W 2.907 (3) O52···H2vii 2.89 (2)
O2W···O3W 2.894 (2) O52···H42W 1.88 (3)
O2W···O1Wi 2.900 (3) O53···H11ii 1.92 (3)
O2W···O4Wviii 2.728 (3) O53···H22Wiii 2.61 (3)
O3W···O2W 2.894 (2) O53···H41Wviii 2.04 (3)
O3W···O1W 2.879 (2) C1···C2iv 3.515 (3)
O3W···O51ix 2.850 (2) C1···C1vii 3.511 (3)
O3W···O1Wi 2.903 (2) C1···C2vii 3.543 (3)
O3W···O2Wi 2.926 (3) C2···C1vii 3.543 (3)
O3W···O4Wx 2.748 (3) C2···C6iv 3.570 (3)
O4W···O2Wxi 2.728 (3) C2···C6vii 3.509 (3)
O4W···O53xi 2.803 (2) C2···C1iv 3.515 (3)
O4W···O52 2.717 (2) C3···C11vii 3.568 (3)
O4W···O3Wx 2.748 (3) C3···C11iv 3.490 (3)
O11···O2xii 3.151 (3) C3···O2v 3.324 (3)
O11···O53ii 2.678 (2) C4···C11vii 3.529 (3)
O11···C6ii 3.264 (3) C4···C11iv 3.519 (3)
O12···O1Wiv 2.779 (2) C6···C2iv 3.570 (3)
O12···O2 2.632 (2) C6···C2vii 3.509 (3)
O51···O1W 2.824 (2) C6···O11ii 3.264 (3)
O51···O3Wix 2.850 (2) C11···C4vii 3.529 (3)
O52···O4W 2.717 (2) C11···C3iv 3.490 (3)
O52···O2vii 3.207 (3) C11···C3vii 3.568 (3)
O53···O4Wviii 2.803 (2) C11···C4iv 3.519 (3)
O53···O11ii 2.678 (2) C11···H2 2.38 (2)
O1W···H21W 2.92 (3)
O51—S5—O52 114.10 (7) Mg1—O2W—H21W 126.5 (19)
O51—S5—O53 110.20 (7) H21W—O2W—H22W 113 (3)
O51—S5—C5 107.36 (7) Mg1—O3W—H32W 125.3 (17)
O52—S5—O53 111.08 (8) Mg1—O3W—H31W 126 (2)
O52—S5—C5 106.81 (7) H31W—O3W—H32W 107 (3)
O53—S5—C5 106.91 (7) H41W—O4W—H42W 105 (3)
O2W—Mg1—O3Wi 90.64 (6) C2—C1—C11 120.22 (13)
O1Wi—Mg1—O3W 90.48 (5) C6—C1—C11 120.43 (13)
O2Wi—Mg1—O3W 90.64 (6) C2—C1—C6 119.35 (13)
O3W—Mg1—O3Wi 180.00 O2—C2—C1 122.58 (14)
O1Wi—Mg1—O2Wi 90.12 (6) C1—C2—C3 119.67 (14)
O1Wi—Mg1—O3Wi 89.53 (5) O2—C2—C3 117.75 (13)
O2Wi—Mg1—O3Wi 89.36 (6) C2—C3—C4 120.41 (14)
O1Wi—Mg1—O2W 89.88 (6) C3—C4—C5 120.14 (14)
O1W—Mg1—O2W 90.12 (6) C4—C5—C6 119.90 (14)
O1W—Mg1—O3W 89.53 (5) S5—C5—C6 118.58 (11)
O1W—Mg1—O1Wi 180.00 S5—C5—C4 121.52 (12)
O1W—Mg1—O2Wi 89.88 (6) C1—C6—C5 120.53 (14)
O1W—Mg1—O3Wi 90.48 (5) O11—C11—O12 123.56 (14)
O2W—Mg1—O3W 89.36 (6) O11—C11—C1 113.42 (13)
O2W—Mg1—O2Wi 180.00 O12—C11—C1 123.02 (14)
C2—O2—H2 107.2 (15) C2—C3—H3 120.00
C11—O11—H11 112 (2) C4—C3—H3 120.00
Mg1—O1W—H11W 128.1 (14) C3—C4—H4 120.00
Mg1—O1W—H12W 123.6 (17) C5—C4—H4 120.00
H11W—O1W—H12W 106 (2) C1—C6—H6 120.00
Mg1—O2W—H22W 121 (2) C5—C6—H6 120.00
O51—S5—C5—C4 1.22 (13) C2—C1—C11—O11 178.30 (13)
O51—S5—C5—C6 −177.90 (11) C2—C1—C11—O12 −1.5 (2)
O52—S5—C5—C4 124.00 (12) C6—C1—C11—O11 −1.25 (19)
O52—S5—C5—C6 −55.12 (13) C6—C1—C11—O12 178.95 (13)
O53—S5—C5—C4 −117.02 (12) O2—C2—C3—C4 179.28 (13)
O53—S5—C5—C6 63.86 (13) C1—C2—C3—C4 −0.4 (2)
C6—C1—C2—O2 −178.76 (13) C2—C3—C4—C5 −0.2 (2)
C6—C1—C2—C3 0.9 (2) C3—C4—C5—S5 −178.80 (11)
C11—C1—C2—O2 1.7 (2) C3—C4—C5—C6 0.3 (2)
C11—C1—C2—C3 −178.65 (12) S5—C5—C6—C1 179.34 (10)
C2—C1—C6—C5 −0.8 (2) C4—C5—C6—C1 0.2 (2)
C11—C1—C6—C5 178.75 (12)

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y, −z; (iv) −x, −y, −z+1; (v) −x−1, −y+1, −z+1; (vi) x−1, y, z; (vii) −x, −y+1, −z+1; (viii) x, y−1, z; (ix) −x, −y+1, −z; (x) −x+1, −y+1, −z; (xi) x, y+1, z; (xii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O12 0.85 (2) 1.87 (2) 2.632 (2) 149 (2)
O11—H11···O53ii 0.79 (3) 1.92 (3) 2.678 (2) 161 (3)
O1W—H11W···O12iv 0.85 (2) 1.93 (2) 2.779 (2) 175 (2)
O1W—H12W···O51 0.82 (3) 2.00 (3) 2.824 (2) 175 (2)
O2W—H21W···O4Wviii 0.82 (3) 1.91 (3) 2.728 (3) 173 (3)
O3W—H31W···O51ix 0.75 (3) 2.10 (3) 2.850 (2) 171 (3)
O3W—H32W···O4Wx 0.89 (3) 1.87 (3) 2.748 (3) 167 (2)
O4W—H41W···O53xi 0.79 (3) 2.04 (3) 2.803 (2) 162 (3)
O4W—H42W···O52 0.84 (3) 1.88 (3) 2.717 (2) 178 (3)
C3—H3···O2v 0.93 2.53 3.324 (3) 144
C4—H4···O51 0.93 2.56 2.940 (3) 105
C6—H6···O11 0.93 2.38 2.705 (2) 100
C6—H6···O11ii 0.93 2.52 3.264 (3) 137

Symmetry codes: (ii) −x+1, −y, −z+1; (iv) −x, −y, −z+1; (viii) x, y−1, z; (ix) −x, −y+1, −z; (x) −x+1, −y+1, −z; (xi) x, y+1, z; (v) −x−1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2770).

References

  1. Abdelhak, J., Cherni, S. N. & Jouini, T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 183–184.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst 27, 435.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Ma, J.-F., Yang, J. & Liu, J.-F. (2003a). Acta Cryst. E59, m478–m480.
  5. Ma, J.-F., Yang, J. & Liu, J.-F. (2003b). Acta Cryst. E59, m481–m482. [DOI] [PubMed]
  6. Ma, J.-F., Yang, J. & Liu, J.-F. (2003c). Acta Cryst. E59, m483–m484.
  7. Ma, J.-F., Yang, J. & Liu, J.-F. (2003d). Acta Cryst. E59, m485–m486.
  8. Ma, J.-F., Yang, J. & Liu, J.-F. (2003e). Acta Cryst. E59, m487–m488.
  9. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030777/tk2770sup1.cif

e-67-m1194-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030777/tk2770Isup2.hkl

e-67-m1194-Isup2.hkl (139.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES