Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 2;67(Pt 9):o2214. doi: 10.1107/S1600536811030157

N,N′-(Ethane-1,2-di­yl)dibenzene­sulfonamide

Mohammad T M Al-Dajani a, Jamal Talaat b, Nornisah Mohamed a, Madhukar Hemamalini c, Hoong-Kun Fun c,*,
PMCID: PMC3200692  PMID: 22064806

Abstract

In the title compound, C14H16N2O4S2, the dihedral angle between the terminal phenyl rings is 77.07 (13)°. The geometries around the S atoms are distorted tetra­hedral, with O—S—O angles of 120.66 (12) and 119.44 (11)°. In the crystal, mol­ecules are stacked in columns along the a axis via inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For biological activities and applications of sulfonamide derivatives, see: Misra et al. (1982); Maren (1976); Li et al. (1995); Yoshino et al. (1992). For related structures, see: Basak et al. (1982); Cotton & Stokley (1970).graphic file with name e-67-o2214-scheme1.jpg

Experimental

Crystal data

  • C14H16N2O4S2

  • M r = 340.41

  • Monoclinic, Inline graphic

  • a = 5.2115 (4) Å

  • b = 16.6905 (13) Å

  • c = 17.8750 (14) Å

  • β = 93.187 (2)°

  • V = 1552.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.46 × 0.08 × 0.07 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.852, T max = 0.975

  • 14604 measured reflections

  • 3545 independent reflections

  • 2628 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.119

  • S = 1.04

  • 3545 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030157/is2755sup1.cif

e-67-o2214-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030157/is2755Isup2.hkl

e-67-o2214-Isup2.hkl (170.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030157/is2755Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.73 (3) 2.40 (3) 3.053 (3) 149 (3)
N2—H1N2⋯O3i 0.83 (3) 2.15 (3) 2.924 (3) 157 (2)
C10—H10A⋯O1ii 0.93 2.57 3.294 (3) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

NM gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the Research University Grant No. 1001/PFARMASI/821142. HKF and MH thank the Malaysian government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

Sulfonamide is found in a number of synthetic as well as natural compounds. These molecules exhibit antibacterial (Misra et al., 1982), insulin-releasing (Maren, 1976), anti-inflammatory (Li et al., 1995) and antitumor (Yoshino et al., 1992) activities. An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure is shown in Fig. 1.

The molecule is bent at the N atoms with C9-S2-N2-C8 and C7-N1-S1-C6 torsion angles of 58.48 (18) and 72.6 (2)°, respectively. The geometries around the sulfonamide S atoms are in a slightly distorted tetrahedral configuration, similar to that observed in other reported structures (Basak et al., 1982). The maximum and minimum values of the angles around S are 121.62 (17) and 105.92 (11)°, respectively. This deviation can be attributed to the non-bonded interactions involving the S–O bonds, resulting in a structure with less steric interference (Cotton & Stokley, 1970) and the varied steric bulk of the substituents. The dihedral angle between the terminal phenyl C1–C6 and C9–C14 rings is 77.07 (13)°.

In the crystal structure, the molecules are connected via intermolecular N1—H1N1···O2, N2—H1N2···O3 and C10—H10A···O1 hydrogen bonds (Table 1) forming one-dimensional supramolecular chains along the a axis (Fig. 2).

Experimental

In a round bottom flask, 25ml from toluene was mixed with benzenesulfonyl chloride (0.02 mol, 3.5 g) with stirring. Drops of ethylenediamine (0.01 mol, 0.5 g ) was added and the mixture was refluxed for 30 min. The yellow gum formed was dissolved in hot water and sodium bicarbonate was added. The yellow precipitate formed was dissolved in methanol at 60 °C, yielding colourless crystals.

Refinement

Atoms H1N1 and H1N2 were located from a difference Fourier map and refined freely [N—H = 0.73 (3)–0.82 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound with dashed lines representing hydrogen bonds.

Crystal data

C14H16N2O4S2 F(000) = 712
Mr = 340.41 Dx = 1.456 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3372 reflections
a = 5.2115 (4) Å θ = 2.4–32.2°
b = 16.6905 (13) Å µ = 0.36 mm1
c = 17.8750 (14) Å T = 296 K
β = 93.187 (2)° Needle, colourless
V = 1552.4 (2) Å3 0.46 × 0.08 × 0.07 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 3545 independent reflections
Radiation source: fine-focus sealed tube 2628 reflections with I > 2σ(I)
graphite Rint = 0.047
φ and ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→6
Tmin = 0.852, Tmax = 0.975 k = −21→21
14604 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.062P)2 + 0.174P] where P = (Fo2 + 2Fc2)/3
3545 reflections (Δ/σ)max = 0.001
207 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.29124 (10) 0.88198 (3) 0.48674 (3) 0.03665 (17)
S2 0.52329 (10) 0.99919 (3) 0.80016 (3) 0.03343 (16)
O1 0.2344 (4) 0.92155 (10) 0.41688 (9) 0.0546 (5)
O2 0.5474 (3) 0.88119 (11) 0.51993 (11) 0.0563 (5)
O3 0.7660 (3) 0.98466 (10) 0.76908 (10) 0.0484 (4)
O4 0.4855 (4) 0.97572 (10) 0.87531 (9) 0.0514 (5)
N1 0.1146 (4) 0.92431 (11) 0.54596 (11) 0.0349 (4)
N2 0.3085 (4) 0.95274 (10) 0.74743 (10) 0.0330 (4)
C1 −0.0240 (5) 0.76368 (15) 0.43026 (14) 0.0502 (6)
H1A −0.1124 0.8043 0.4042 0.060*
C2 −0.1056 (6) 0.68534 (16) 0.42342 (16) 0.0595 (7)
H2A −0.2505 0.6731 0.3929 0.071*
C3 0.0258 (6) 0.62555 (15) 0.46139 (17) 0.0606 (8)
H3A −0.0296 0.5728 0.4560 0.073*
C4 0.2370 (7) 0.64248 (16) 0.50704 (16) 0.0643 (8)
H4A 0.3244 0.6015 0.5328 0.077*
C5 0.3216 (5) 0.72138 (15) 0.51494 (14) 0.0518 (6)
H5A 0.4654 0.7334 0.5461 0.062*
C6 0.1905 (4) 0.78130 (13) 0.47623 (11) 0.0353 (5)
C7 0.1430 (4) 0.90629 (12) 0.62583 (12) 0.0368 (5)
H7A 0.2338 0.8559 0.6332 0.044*
H7B −0.0255 0.9006 0.6457 0.044*
C8 0.2890 (5) 0.97194 (13) 0.66725 (11) 0.0370 (5)
H8A 0.4596 0.9768 0.6486 0.044*
H8B 0.2006 1.0226 0.6593 0.044*
C9 0.4584 (4) 1.10252 (12) 0.79155 (11) 0.0325 (5)
C10 0.5938 (5) 1.14968 (14) 0.74477 (13) 0.0451 (6)
H10A 0.7253 1.1279 0.7181 0.054*
C11 0.5318 (6) 1.23066 (15) 0.73773 (15) 0.0557 (7)
H11A 0.6214 1.2632 0.7059 0.067*
C12 0.3395 (6) 1.26242 (15) 0.77743 (16) 0.0566 (7)
H12A 0.3001 1.3166 0.7730 0.068*
C13 0.2043 (6) 1.21465 (16) 0.82375 (17) 0.0592 (7)
H13A 0.0721 1.2366 0.8500 0.071*
C14 0.2625 (5) 1.13442 (14) 0.83181 (14) 0.0456 (6)
H14A 0.1720 1.1022 0.8637 0.055*
H1N1 −0.017 (5) 0.9291 (15) 0.5307 (14) 0.034 (7)*
H1N2 0.168 (5) 0.9581 (14) 0.7659 (13) 0.036 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0300 (3) 0.0369 (3) 0.0434 (3) −0.0052 (2) 0.0060 (2) −0.0049 (2)
S2 0.0273 (3) 0.0334 (3) 0.0391 (3) 0.0054 (2) −0.0026 (2) −0.0020 (2)
O1 0.0715 (13) 0.0515 (10) 0.0419 (9) −0.0085 (9) 0.0125 (9) 0.0041 (7)
O2 0.0266 (9) 0.0588 (11) 0.0835 (12) −0.0066 (8) 0.0036 (9) −0.0167 (9)
O3 0.0240 (8) 0.0516 (10) 0.0694 (11) 0.0088 (7) −0.0001 (8) −0.0077 (8)
O4 0.0628 (12) 0.0508 (9) 0.0397 (9) 0.0058 (9) −0.0064 (8) 0.0064 (7)
N1 0.0268 (10) 0.0378 (10) 0.0397 (10) 0.0006 (8) −0.0024 (9) −0.0045 (8)
N2 0.0276 (10) 0.0339 (9) 0.0378 (9) −0.0010 (8) 0.0057 (8) −0.0022 (7)
C1 0.0468 (15) 0.0431 (13) 0.0595 (15) −0.0009 (12) −0.0085 (13) −0.0065 (11)
C2 0.0548 (17) 0.0508 (15) 0.0714 (18) −0.0129 (13) −0.0094 (15) −0.0140 (13)
C3 0.075 (2) 0.0389 (13) 0.0684 (17) −0.0122 (14) 0.0061 (16) −0.0111 (12)
C4 0.086 (2) 0.0411 (13) 0.0645 (17) 0.0081 (15) −0.0052 (17) 0.0018 (12)
C5 0.0519 (16) 0.0467 (13) 0.0550 (14) 0.0048 (12) −0.0123 (13) −0.0053 (11)
C6 0.0315 (12) 0.0365 (11) 0.0383 (11) 0.0003 (9) 0.0052 (10) −0.0064 (9)
C7 0.0366 (12) 0.0330 (10) 0.0408 (11) −0.0065 (9) 0.0033 (10) −0.0018 (9)
C8 0.0388 (12) 0.0333 (10) 0.0385 (11) −0.0073 (10) −0.0012 (10) 0.0005 (9)
C9 0.0285 (11) 0.0341 (10) 0.0340 (10) 0.0012 (9) −0.0059 (9) −0.0059 (8)
C10 0.0467 (14) 0.0427 (12) 0.0462 (13) 0.0003 (11) 0.0056 (11) −0.0038 (10)
C11 0.0676 (19) 0.0419 (13) 0.0573 (15) −0.0067 (13) 0.0012 (14) 0.0049 (11)
C12 0.0651 (19) 0.0312 (12) 0.0719 (17) 0.0059 (12) −0.0101 (15) −0.0042 (11)
C13 0.0524 (16) 0.0446 (14) 0.0805 (19) 0.0124 (13) 0.0043 (15) −0.0164 (13)
C14 0.0392 (13) 0.0401 (12) 0.0581 (14) 0.0039 (10) 0.0093 (12) −0.0083 (10)

Geometric parameters (Å, °)

S1—O1 1.4291 (17) C4—H4A 0.9300
S1—O2 1.4307 (19) C5—C6 1.376 (3)
S1—N1 1.605 (2) C5—H5A 0.9300
S1—C6 1.767 (2) C7—C8 1.505 (3)
S2—O4 1.4233 (17) C7—H7A 0.9700
S2—O3 1.4300 (17) C7—H7B 0.9700
S2—N2 1.6202 (19) C8—H8A 0.9700
S2—C9 1.763 (2) C8—H8B 0.9700
N1—C7 1.459 (3) C9—C10 1.372 (3)
N1—H1N1 0.73 (3) C9—C14 1.387 (3)
N2—C8 1.467 (3) C10—C11 1.394 (3)
N2—H1N2 0.82 (3) C10—H10A 0.9300
C1—C2 1.378 (3) C11—C12 1.367 (4)
C1—C6 1.382 (3) C11—H11A 0.9300
C1—H1A 0.9300 C12—C13 1.372 (4)
C2—C3 1.369 (4) C12—H12A 0.9300
C2—H2A 0.9300 C13—C14 1.379 (3)
C3—C4 1.363 (4) C13—H13A 0.9300
C3—H3A 0.9300 C14—H14A 0.9300
C4—C5 1.393 (4)
O1—S1—O2 120.66 (12) C5—C6—C1 120.5 (2)
O1—S1—N1 105.92 (11) C5—C6—S1 120.09 (19)
O2—S1—N1 106.67 (11) C1—C6—S1 119.43 (18)
O1—S1—C6 107.49 (10) N1—C7—C8 110.63 (17)
O2—S1—C6 107.46 (11) N1—C7—H7A 109.5
N1—S1—C6 108.11 (10) C8—C7—H7A 109.5
O4—S2—O3 119.44 (11) N1—C7—H7B 109.5
O4—S2—N2 106.86 (11) C8—C7—H7B 109.5
O3—S2—N2 106.87 (10) H7A—C7—H7B 108.1
O4—S2—C9 108.40 (10) N2—C8—C7 109.10 (17)
O3—S2—C9 107.56 (10) N2—C8—H8A 109.9
N2—S2—C9 107.12 (10) C7—C8—H8A 109.9
C7—N1—S1 121.62 (17) N2—C8—H8B 109.9
C7—N1—H1N1 115.6 (19) C7—C8—H8B 109.9
S1—N1—H1N1 111 (2) H8A—C8—H8B 108.3
C8—N2—S2 118.16 (14) C10—C9—C14 120.9 (2)
C8—N2—H1N2 110.7 (16) C10—C9—S2 120.78 (17)
S2—N2—H1N2 108.3 (16) C14—C9—S2 118.26 (17)
C2—C1—C6 119.4 (2) C9—C10—C11 119.1 (2)
C2—C1—H1A 120.3 C9—C10—H10A 120.4
C6—C1—H1A 120.3 C11—C10—H10A 120.4
C3—C2—C1 120.3 (3) C12—C11—C10 120.2 (2)
C3—C2—H2A 119.9 C12—C11—H11A 119.9
C1—C2—H2A 119.9 C10—C11—H11A 119.9
C4—C3—C2 120.7 (2) C11—C12—C13 120.3 (2)
C4—C3—H3A 119.6 C11—C12—H12A 119.9
C2—C3—H3A 119.6 C13—C12—H12A 119.9
C3—C4—C5 119.8 (3) C12—C13—C14 120.7 (2)
C3—C4—H4A 120.1 C12—C13—H13A 119.7
C5—C4—H4A 120.1 C14—C13—H13A 119.7
C6—C5—C4 119.4 (3) C13—C14—C9 118.8 (2)
C6—C5—H5A 120.3 C13—C14—H14A 120.6
C4—C5—H5A 120.3 C9—C14—H14A 120.6
O1—S1—N1—C7 −172.40 (17) N1—S1—C6—C1 80.2 (2)
O2—S1—N1—C7 −42.7 (2) S1—N1—C7—C8 102.1 (2)
C6—S1—N1—C7 72.6 (2) S2—N2—C8—C7 162.43 (15)
O4—S2—N2—C8 174.49 (16) N1—C7—C8—N2 178.68 (19)
O3—S2—N2—C8 −56.57 (19) O4—S2—C9—C10 145.79 (19)
C9—S2—N2—C8 58.48 (18) O3—S2—C9—C10 15.4 (2)
C6—C1—C2—C3 −0.5 (4) N2—S2—C9—C10 −99.2 (2)
C1—C2—C3—C4 0.7 (5) O4—S2—C9—C14 −35.8 (2)
C2—C3—C4—C5 −0.4 (5) O3—S2—C9—C14 −166.27 (18)
C3—C4—C5—C6 −0.2 (4) N2—S2—C9—C14 79.1 (2)
C4—C5—C6—C1 0.4 (4) C14—C9—C10—C11 −0.2 (4)
C4—C5—C6—S1 178.9 (2) S2—C9—C10—C11 178.08 (19)
C2—C1—C6—C5 −0.1 (4) C9—C10—C11—C12 0.4 (4)
C2—C1—C6—S1 −178.6 (2) C10—C11—C12—C13 −0.8 (4)
O1—S1—C6—C5 147.7 (2) C11—C12—C13—C14 0.9 (4)
O2—S1—C6—C5 16.4 (2) C12—C13—C14—C9 −0.7 (4)
N1—S1—C6—C5 −98.4 (2) C10—C9—C14—C13 0.4 (4)
O1—S1—C6—C1 −33.8 (2) S2—C9—C14—C13 −178.0 (2)
O2—S1—C6—C1 −165.05 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2i 0.73 (3) 2.40 (3) 3.053 (3) 149 (3)
N2—H1N2···O3i 0.83 (3) 2.15 (3) 2.924 (3) 157 (2)
C10—H10A···O1ii 0.93 2.57 3.294 (3) 135.

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2755).

References

  1. Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1982). Cryst. Struct. Commun. 11, 1609–1616.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cotton, F. A. & Stokley, P. F. (1970). J. Am. Chem. Soc. 92, 294–302.
  4. Li, J. J., et al. (1995). J. Med. Chem. 38, 4570–4578. [DOI] [PubMed]
  5. Maren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309–327. [DOI] [PubMed]
  6. Misra, V. S., Saxena, V. K. & Srivastava, R. J. (1982). J. Indian Chem. Soc. 59, 781.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Yoshino, H., Ueda, N., Niijma, J., Sugumi, H., Kotake, Y., Koyanagi, N., Yoshimatsu, K., Asada, M., Watanabe, T., Nagasu, T., Tsukahara, K., Lijima, A. & Kitoh, K. (1992). J. Med. Chem. 35, 2496–2497. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030157/is2755sup1.cif

e-67-o2214-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030157/is2755Isup2.hkl

e-67-o2214-Isup2.hkl (170.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030157/is2755Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES