Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2353. doi: 10.1107/S1600536811032491

(2Z)-1-(5-Hy­droxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-3-(4-meth­oxy­anilino)but-2-en-1-one

Abdullah M Asiri a,b,, Abdulrahman O Al-Youbi a, Hassan M Faidallah a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3200693  PMID: 22064834

Abstract

The central residue in the title compound, C21H21N3O3, is close to planar (r.m.s. deviation = 0.0753 Å for all non-H atoms from OH to NH inclusive): the hy­droxy, amino and carbonyl groups all lie to the same side of the mol­ecule (the conformation about the ethene bond is Z), facilitating the formation of intra­molecular O—H⋯O and N—H⋯O hydrogen bonds that close S(6) rings. However, overall the mol­ecule is twisted as the terminal aromatic rings are not coplanar with the central plane [dihedral angles = 20.55 (5) and 80.90 (4)° for the N-bound phenyl ring and the meth­oxy­benzene ring, respectively]. The dihedral angle between the rings is 82.14 (7)°. Supra­molecular layers in the ac plane mediated by C—H⋯π inter­actions are found in the crystal.

Related literature

For background to the synthesis, see: Gelin et al. (1983); Bendaas et al. (1999). For the structure of the 4-chloro derivative, see: Asiri et al. (2011).graphic file with name e-67-o2353-scheme1.jpg

Experimental

Crystal data

  • C21H21N3O3

  • M r = 363.41

  • Monoclinic, Inline graphic

  • a = 9.5717 (3) Å

  • b = 16.9516 (6) Å

  • c = 11.3143 (4) Å

  • β = 104.946 (4)°

  • V = 1773.70 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.837, T max = 1.000

  • 8486 measured reflections

  • 3939 independent reflections

  • 3145 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.104

  • S = 1.05

  • 3939 reflections

  • 255 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032491/hb6355sup1.cif

e-67-o2353-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032491/hb6355Isup2.hkl

e-67-o2353-Isup2.hkl (193.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032491/hb6355Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1,N2,C1–C3 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.86 (1) 1.68 (1) 2.4963 (15) 156 (2)
N3—H3⋯O2 0.89 (1) 1.92 (1) 2.6447 (16) 138 (2)
C14—H14b⋯Cg1i 0.98 2.88 3.5542 (18) 127
C21—H21c⋯Cg2ii 0.98 2.76 3.5195 (17) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing research facilities. Dr Al-Amry is thanked for support. The authors also thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

In connection with a recent structural study (Asiri et al., 2011), the title compound (I) was prepared as a part of on-going investigations of reactions between pyrazoles and aniline derivatives (Gelin et al., 1983; Bendaas et al., 1999).

The molecular structure of (I), Fig. 1, resembles closely that of the 4-chloroanilino derivative (Asiri et al., 2011) and features a Z configuration about the C12—C13 [1.381 (2) Å] bond. The hydroxy and amino groups are syn to the central carbonyl group and each forms a hydrogen bond to close a S(6) ring (Table 1). A direct consequence of this is that the central residue is planar; the values of the C1—C2—C11—O2, C2—C11—C12—C13 and C11—C12—C13—N3 torsion angles are -3.6 (2), -171.74 (15) and -1.7 (2) °, respectively. The benzene and 4-methoxybenzene rings are each twisted out of the central plane as seen in the values of the C1—N1—C5—C6 and C13—N3—C15—C16 torsion angles of 159.97 (15) and -74.5 (2) °, respectively.

The most prominent feature of the crystal packing is the formation of supramolecular layers in the ac plane and mediated by C—H···π interactions, Fig. 2. and Table 1. Layers stack along the b axis as shown in Fig. 3.

Experimental

A solution of 4-acetoacetyl-5-hydroxy-3-methyl-1-p-sulfamylphenypyrazole (1.7 g, 0.005 mole) and 4-methoxyaniline (0.63 g, 0.005 mole) in ethanol (25 ml) was refluxed for 2 h. The precipitate, obtained from the hot solution, was collected, washed with methanol and recrystallized from ethanol-benzene as yellow blocks; M.pt: 507–507 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxyl- and amino- H-atoms were located in a difference Fourier map, and subsequently refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of a supramolecular layer in (I) mediated by C—H···π interactions, shown as purple dashed lines

Fig. 3.

Fig. 3.

Stacking of supramolecular layers along the b axis in (I). The C—H···π interactions are shown as purple dashed lines.

Crystal data

C21H21N3O3 F(000) = 768
Mr = 363.41 Dx = 1.361 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3917 reflections
a = 9.5717 (3) Å θ = 2.4–29.3°
b = 16.9516 (6) Å µ = 0.09 mm1
c = 11.3143 (4) Å T = 100 K
β = 104.946 (4)° Block, yellow
V = 1773.70 (10) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3939 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3145 reflections with I > 2σ(I)
mirror Rint = 0.024
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.4°
ω scans h = −12→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −17→21
Tmin = 0.837, Tmax = 1.000 l = −14→14
8486 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.8331P] where P = (Fo2 + 2Fc2)/3
3939 reflections (Δ/σ)max < 0.001
255 parameters Δρmax = 0.27 e Å3
2 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.14980 (12) 0.66071 (7) 0.33592 (9) 0.0222 (3)
O2 0.37382 (11) 0.60631 (7) 0.29255 (9) 0.0213 (3)
O3 0.91460 (11) 0.58562 (7) −0.12793 (9) 0.0219 (3)
N1 0.17619 (13) 0.67412 (8) 0.54868 (11) 0.0166 (3)
N2 0.28248 (13) 0.65978 (8) 0.65708 (11) 0.0175 (3)
N3 0.61937 (14) 0.57378 (8) 0.23667 (11) 0.0195 (3)
C1 0.22616 (16) 0.65491 (9) 0.45138 (13) 0.0170 (3)
C2 0.36749 (16) 0.62804 (9) 0.49321 (13) 0.0169 (3)
C3 0.39577 (15) 0.63279 (9) 0.62323 (13) 0.0162 (3)
C4 0.52961 (16) 0.61127 (10) 0.71833 (13) 0.0196 (3)
H4A 0.5134 0.6184 0.7997 0.029*
H4B 0.6094 0.6452 0.7101 0.029*
H4C 0.5540 0.5560 0.7078 0.029*
C5 0.04095 (15) 0.70640 (9) 0.55398 (13) 0.0166 (3)
C6 −0.00329 (16) 0.69838 (9) 0.66119 (13) 0.0187 (3)
H6 0.0562 0.6716 0.7296 0.022*
C7 −0.13461 (16) 0.72972 (10) 0.66734 (14) 0.0217 (3)
H7 −0.1651 0.7245 0.7405 0.026*
C8 −0.22213 (17) 0.76870 (10) 0.56770 (15) 0.0247 (4)
H8 −0.3126 0.7898 0.5722 0.030*
C9 −0.17707 (17) 0.77671 (10) 0.46184 (14) 0.0235 (4)
H9 −0.2367 0.8036 0.3936 0.028*
C10 −0.04527 (17) 0.74579 (10) 0.45410 (14) 0.0205 (3)
H10 −0.0146 0.7516 0.3811 0.025*
C11 0.44652 (16) 0.60431 (9) 0.40619 (13) 0.0176 (3)
C12 0.59321 (16) 0.58162 (9) 0.44007 (13) 0.0175 (3)
H12 0.6385 0.5752 0.5247 0.021*
C13 0.67514 (16) 0.56811 (9) 0.35792 (13) 0.0176 (3)
C14 0.83048 (16) 0.54384 (10) 0.40247 (14) 0.0211 (3)
H14A 0.8907 0.5790 0.3677 0.032*
H14B 0.8417 0.4895 0.3769 0.032*
H14C 0.8606 0.5471 0.4919 0.032*
C15 0.70003 (15) 0.57341 (10) 0.14592 (13) 0.0179 (3)
C16 0.77859 (16) 0.63978 (10) 0.13037 (13) 0.0193 (3)
H16 0.7840 0.6838 0.1834 0.023*
C17 0.84893 (16) 0.64190 (10) 0.03781 (13) 0.0190 (3)
H17 0.9022 0.6874 0.0271 0.023*
C18 0.84160 (15) 0.57738 (9) −0.03966 (13) 0.0172 (3)
C19 0.76391 (16) 0.51053 (10) −0.02410 (13) 0.0193 (3)
H19 0.7589 0.4663 −0.0766 0.023*
C20 0.69349 (16) 0.50912 (10) 0.06938 (13) 0.0196 (3)
H20 0.6405 0.4636 0.0807 0.023*
C21 0.90919 (17) 0.52107 (10) −0.21023 (13) 0.0223 (3)
H21A 0.9647 0.5343 −0.2692 0.033*
H21B 0.8084 0.5106 −0.2540 0.033*
H21C 0.9507 0.4740 −0.1640 0.033*
H1 0.214 (2) 0.6449 (15) 0.300 (2) 0.067 (8)*
H3 0.5266 (11) 0.5872 (11) 0.2149 (16) 0.030 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0225 (6) 0.0292 (7) 0.0142 (5) 0.0037 (5) 0.0039 (4) −0.0013 (5)
O2 0.0214 (5) 0.0273 (6) 0.0154 (5) 0.0025 (5) 0.0049 (4) −0.0012 (4)
O3 0.0259 (6) 0.0232 (6) 0.0198 (5) −0.0003 (5) 0.0119 (5) 0.0004 (4)
N1 0.0172 (6) 0.0178 (7) 0.0141 (6) 0.0020 (5) 0.0027 (5) 0.0006 (5)
N2 0.0187 (6) 0.0179 (7) 0.0149 (6) 0.0010 (5) 0.0024 (5) 0.0007 (5)
N3 0.0178 (6) 0.0250 (8) 0.0171 (6) 0.0018 (6) 0.0070 (5) −0.0006 (5)
C1 0.0207 (7) 0.0155 (8) 0.0150 (7) −0.0020 (6) 0.0048 (6) −0.0008 (6)
C2 0.0185 (7) 0.0158 (8) 0.0166 (7) −0.0001 (6) 0.0050 (6) 0.0000 (6)
C3 0.0181 (7) 0.0138 (7) 0.0172 (7) −0.0021 (6) 0.0055 (6) −0.0004 (6)
C4 0.0204 (7) 0.0215 (8) 0.0172 (7) 0.0024 (6) 0.0053 (6) −0.0002 (6)
C5 0.0159 (7) 0.0145 (8) 0.0193 (7) −0.0009 (6) 0.0042 (6) −0.0029 (6)
C6 0.0183 (7) 0.0189 (8) 0.0184 (7) −0.0013 (6) 0.0036 (6) −0.0002 (6)
C7 0.0201 (7) 0.0254 (9) 0.0208 (7) −0.0020 (7) 0.0075 (6) −0.0022 (6)
C8 0.0181 (7) 0.0273 (9) 0.0288 (8) 0.0025 (7) 0.0060 (7) −0.0032 (7)
C9 0.0217 (8) 0.0232 (9) 0.0234 (8) 0.0040 (7) 0.0018 (6) 0.0020 (6)
C10 0.0230 (8) 0.0205 (8) 0.0183 (7) 0.0006 (6) 0.0060 (6) 0.0010 (6)
C11 0.0225 (7) 0.0137 (8) 0.0169 (7) −0.0013 (6) 0.0056 (6) −0.0003 (6)
C12 0.0205 (7) 0.0178 (8) 0.0145 (7) 0.0001 (6) 0.0051 (6) −0.0005 (6)
C13 0.0204 (7) 0.0142 (8) 0.0178 (7) −0.0013 (6) 0.0040 (6) −0.0009 (6)
C14 0.0210 (7) 0.0231 (9) 0.0202 (7) 0.0018 (6) 0.0072 (6) −0.0007 (6)
C15 0.0168 (7) 0.0225 (9) 0.0149 (7) 0.0027 (6) 0.0046 (6) 0.0013 (6)
C16 0.0205 (7) 0.0180 (8) 0.0188 (7) 0.0039 (6) 0.0039 (6) −0.0011 (6)
C17 0.0189 (7) 0.0174 (8) 0.0205 (7) 0.0011 (6) 0.0045 (6) 0.0034 (6)
C18 0.0151 (7) 0.0215 (8) 0.0145 (7) 0.0041 (6) 0.0030 (6) 0.0041 (6)
C19 0.0210 (7) 0.0194 (8) 0.0170 (7) 0.0009 (6) 0.0039 (6) −0.0022 (6)
C20 0.0202 (7) 0.0197 (8) 0.0191 (7) −0.0020 (6) 0.0056 (6) 0.0001 (6)
C21 0.0235 (8) 0.0273 (9) 0.0178 (7) 0.0040 (7) 0.0083 (6) −0.0011 (6)

Geometric parameters (Å, °)

O1—C1 1.3259 (17) C8—C9 1.380 (2)
O1—H1 0.864 (10) C8—H8 0.9500
O2—C11 1.2950 (17) C9—C10 1.390 (2)
O3—C18 1.3657 (17) C9—H9 0.9500
O3—C21 1.4291 (19) C10—H10 0.9500
N1—C1 1.3484 (19) C11—C12 1.410 (2)
N1—N2 1.3981 (16) C12—C13 1.381 (2)
N1—C5 1.4208 (19) C12—H12 0.9500
N2—C3 1.3213 (19) C13—C14 1.499 (2)
N3—C13 1.3410 (19) C14—H14A 0.9800
N3—C15 1.4350 (19) C14—H14B 0.9800
N3—H3 0.888 (9) C14—H14C 0.9800
C1—C2 1.390 (2) C15—C20 1.383 (2)
C2—C3 1.4277 (19) C15—C16 1.389 (2)
C2—C11 1.445 (2) C16—C17 1.384 (2)
C3—C4 1.490 (2) C16—H16 0.9500
C4—H4A 0.9800 C17—C18 1.392 (2)
C4—H4B 0.9800 C17—H17 0.9500
C4—H4C 0.9800 C18—C19 1.391 (2)
C5—C10 1.387 (2) C19—C20 1.393 (2)
C5—C6 1.391 (2) C19—H19 0.9500
C6—C7 1.383 (2) C20—H20 0.9500
C6—H6 0.9500 C21—H21A 0.9800
C7—C8 1.386 (2) C21—H21B 0.9800
C7—H7 0.9500 C21—H21C 0.9800
C1—O1—H1 99.0 (16) C9—C10—H10 120.3
C18—O3—C21 117.30 (12) O2—C11—C12 121.30 (13)
C1—N1—N2 110.07 (12) O2—C11—C2 115.32 (13)
C1—N1—C5 130.27 (12) C12—C11—C2 123.38 (13)
N2—N1—C5 119.65 (11) C13—C12—C11 124.10 (13)
C3—N2—N1 105.77 (11) C13—C12—H12 118.0
C13—N3—C15 125.88 (13) C11—C12—H12 118.0
C13—N3—H3 114.1 (12) N3—C13—C12 122.10 (13)
C15—N3—H3 119.1 (12) N3—C13—C14 117.52 (13)
O1—C1—N1 124.40 (13) C12—C13—C14 120.35 (13)
O1—C1—C2 126.92 (14) C13—C14—H14A 109.5
N1—C1—C2 108.68 (12) C13—C14—H14B 109.5
C1—C2—C3 103.98 (13) H14A—C14—H14B 109.5
C1—C2—C11 119.59 (13) C13—C14—H14C 109.5
C3—C2—C11 136.42 (14) H14A—C14—H14C 109.5
N2—C3—C2 111.50 (13) H14B—C14—H14C 109.5
N2—C3—C4 119.49 (12) C20—C15—C16 119.82 (14)
C2—C3—C4 129.00 (13) C20—C15—N3 120.37 (14)
C3—C4—H4A 109.5 C16—C15—N3 119.71 (14)
C3—C4—H4B 109.5 C17—C16—C15 120.12 (15)
H4A—C4—H4B 109.5 C17—C16—H16 119.9
C3—C4—H4C 109.5 C15—C16—H16 119.9
H4A—C4—H4C 109.5 C16—C17—C18 120.05 (15)
H4B—C4—H4C 109.5 C16—C17—H17 120.0
C10—C5—C6 120.45 (14) C18—C17—H17 120.0
C10—C5—N1 120.55 (13) O3—C18—C19 124.54 (14)
C6—C5—N1 119.00 (13) O3—C18—C17 115.33 (14)
C7—C6—C5 119.44 (14) C19—C18—C17 120.13 (14)
C7—C6—H6 120.3 C18—C19—C20 119.28 (14)
C5—C6—H6 120.3 C18—C19—H19 120.4
C6—C7—C8 120.57 (14) C20—C19—H19 120.4
C6—C7—H7 119.7 C15—C20—C19 120.60 (15)
C8—C7—H7 119.7 C15—C20—H20 119.7
C9—C8—C7 119.60 (15) C19—C20—H20 119.7
C9—C8—H8 120.2 O3—C21—H21A 109.5
C7—C8—H8 120.2 O3—C21—H21B 109.5
C8—C9—C10 120.63 (15) H21A—C21—H21B 109.5
C8—C9—H9 119.7 O3—C21—H21C 109.5
C10—C9—H9 119.7 H21A—C21—H21C 109.5
C5—C10—C9 119.30 (14) H21B—C21—H21C 109.5
C5—C10—H10 120.3
C1—N1—N2—C3 0.61 (16) N1—C5—C10—C9 179.96 (14)
C5—N1—N2—C3 −177.93 (13) C8—C9—C10—C5 0.2 (2)
N2—N1—C1—O1 178.89 (14) C1—C2—C11—O2 −3.6 (2)
C5—N1—C1—O1 −2.8 (3) C3—C2—C11—O2 176.96 (17)
N2—N1—C1—C2 −0.54 (17) C1—C2—C11—C12 175.40 (15)
C5—N1—C1—C2 177.79 (15) C3—C2—C11—C12 −4.1 (3)
O1—C1—C2—C3 −179.15 (15) O2—C11—C12—C13 7.2 (2)
N1—C1—C2—C3 0.26 (17) C2—C11—C12—C13 −171.74 (15)
O1—C1—C2—C11 1.2 (2) C15—N3—C13—C12 169.33 (15)
N1—C1—C2—C11 −179.38 (13) C15—N3—C13—C14 −12.5 (2)
N1—N2—C3—C2 −0.44 (17) C11—C12—C13—N3 −1.7 (2)
N1—N2—C3—C4 −179.84 (13) C11—C12—C13—C14 −179.77 (15)
C1—C2—C3—N2 0.12 (18) C13—N3—C15—C20 109.16 (18)
C11—C2—C3—N2 179.67 (17) C13—N3—C15—C16 −74.5 (2)
C1—C2—C3—C4 179.46 (15) C20—C15—C16—C17 0.7 (2)
C11—C2—C3—C4 −1.0 (3) N3—C15—C16—C17 −175.75 (13)
C1—N1—C5—C10 −20.5 (2) C15—C16—C17—C18 −0.3 (2)
N2—N1—C5—C10 157.74 (14) C21—O3—C18—C19 0.5 (2)
C1—N1—C5—C6 159.97 (15) C21—O3—C18—C17 −179.53 (13)
N2—N1—C5—C6 −21.8 (2) C16—C17—C18—O3 179.91 (13)
C10—C5—C6—C7 0.3 (2) C16—C17—C18—C19 −0.2 (2)
N1—C5—C6—C7 179.88 (14) O3—C18—C19—C20 −179.88 (13)
C5—C6—C7—C8 0.2 (2) C17—C18—C19—C20 0.2 (2)
C6—C7—C8—C9 −0.5 (3) C16—C15—C20—C19 −0.6 (2)
C7—C8—C9—C10 0.3 (3) N3—C15—C20—C19 175.76 (13)
C6—C5—C10—C9 −0.5 (2) C18—C19—C20—C15 0.2 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1,N2,C1–C3 and C15–C20 rings, respectively.
D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.86 (1) 1.68 (1) 2.4963 (15) 156 (2)
N3—H3···O2 0.89 (1) 1.92 (1) 2.6447 (16) 138.(2)
C14—H14b···Cg1i 0.98 2.88 3.5542 (18) 127
C21—H21c···Cg2ii 0.98 2.76 3.5195 (17) 134

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6355).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157. [DOI] [PMC free article] [PubMed]
  3. Bendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291–1294.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078–4082.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032491/hb6355sup1.cif

e-67-o2353-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032491/hb6355Isup2.hkl

e-67-o2353-Isup2.hkl (193.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032491/hb6355Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES