Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2430. doi: 10.1107/S1600536811033046

1-Benzoyl-3-[3-cyano-8-methyl-4-(1-methyl-1H-pyrrol-2-yl)-5,6,7,8-tetra­hydro­quinolin-2-yl]thio­urea

Abdullah M Asiri a,b, Hassan M Faidallah a, Abdulrahman O Al-Youbi a, Khalid A Alamry a, Seik Weng Ng c,a,*
PMCID: PMC3200694  PMID: 22064903

Abstract

In the N-substituted benzoyl­thio­urea, C24H23N5OS, the benzoyl­thio­urea unit is non-planar (r.m.s. deviation = 0.126 Å). The aliphatic part of the tetra­hydro­quinoline fused-ring system is disordered over two positions in a 0.592 (5):0.408 (5) ratio. The pyridine and pyrrole rings are twisted by 55.2 (1)° in order to avoid crowding of their respective substituents. Pairs of mol­ecules are linked by N—H⋯N hydrogen bonds, forming centrosymmetric dimers. Furthermore, an intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation.

Related literature

For medicinal properties of cyano­pyridines, see: Cocco et al. (2005); El-Hawash et al. (2006).graphic file with name e-67-o2430-scheme1.jpg

Experimental

Crystal data

  • C24H23N5OS

  • M r = 429.53

  • Triclinic, Inline graphic

  • a = 9.7072 (4) Å

  • b = 10.4928 (5) Å

  • c = 11.8828 (5) Å

  • α = 82.245 (4)°

  • β = 84.263 (3)°

  • γ = 63.671 (4)°

  • V = 1073.76 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.55 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.654, T max = 0.747

  • 7386 measured reflections

  • 4218 independent reflections

  • 3897 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.146

  • S = 1.03

  • 4218 reflections

  • 294 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033046/bt5613sup1.cif

e-67-o2430-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033046/bt5613Isup2.hkl

e-67-o2430-Isup2.hkl (206.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033046/bt5613Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1 0.88 1.90 2.594 (2) 135
N5—H5⋯N3i 0.88 2.22 3.058 (2) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

There are several studies on cyanopyridine derivatives as these compounds exhibit useful anticancer and antiviral activities Cocco et al., 2005; El-Hawash et al., 2006). If these compounds possess a primary amine group, then they can be reacted with phenyl isothiocyanate to yield cyanopyridine-benzoythiourea derivatives, yet another class of medicinal compounds. Because of the ease phenyl isothiocyanate reacts with primary amines, we have in this study used 2-amino-3-cyano–8-methyl-4-(N-methylpyrrolyl)-5,6,7,8-tetrahydroquinoline to synthesize the correponding N-substituted benzoylthiourea (Scheme I).

In the N-substituted benzoylthiourea, C24H23N5OS, the benzoylthiourea portion is somewhat non-planar; the mean plane is aligned at 67.9 (1)° with respect the the mean-plane of the non-planar tetrahydroquinoline fused-ring. An intramolecular N–H···O hydrogen bond appears to prevent further twisting in the benzoylthiourea portion. The aliphatic portion of the tetrahydroquinoline fused-ring is disordered over two positions in a 0.592 (5): 0.408 ratio. The pyridine ring (which has a cyanide substituent) and the pyrrole ring (which has a methyl substitutent) are twisted by 55.2 (1) ° in order to avoid crowding of their respective substituents (Fig. 1). Two molecules are linked by an N–H···O hydrogen bonds to form a centrosymmetric dimer (Table 1).

Experimental

2-Amino-3-cyano–8-methyl-4-(N-methylpyrrolyl)-5,6,7,8-tetrahydroquinoline (10 mmol), potassium carbonate (20 mmol) in dry acetone (25 ml) was stirred and then treated with phenyl isothiocyanate (12 mmol). The mixture was heated for 10 h; the acetone was removed under pressure and the solid mass dissolved in water. The solution was acidified with 2 N hydrochloric acid. The crude product was purified by recrystallization from ethanol.

Refinement

Carbon- and nitrogen-bound H-atoms were placed in calculated positions [C–H 0.95 to 1.00, N–H 0.88 Å, Uiso(H) 1.2–15Ueq(C,N)] and were included in the refinement in the riding model approximation.

The three atoms of the cyclohexane ring that are not part of the fused system are disordered over two positions, as is the methyl substituent. For these four atoms, 1,2-related distances were restrained to 1.54±0.01 Å and 1,3-related ones to 2.51±0.01 Å. The displacement parameters of the primed atoms were set to those of the umprimed ones. The site occupation factor of the major component refined to 59.2 (5) %.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C24H23N5OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the cyclohexene ring is not shown.

Crystal data

C24H23N5OS Z = 2
Mr = 429.53 F(000) = 452
Triclinic, P1 Dx = 1.329 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 9.7072 (4) Å Cell parameters from 4274 reflections
b = 10.4928 (5) Å θ = 3.8–74.2°
c = 11.8828 (5) Å µ = 1.55 mm1
α = 82.245 (4)° T = 100 K
β = 84.263 (3)° Prism, brown–orange
γ = 63.671 (4)° 0.30 × 0.20 × 0.20 mm
V = 1073.76 (8) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4218 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 3897 reflections with I > 2σ(I)
Mirror Rint = 0.020
Detector resolution: 10.4041 pixels mm-1 θmax = 74.3°, θmin = 3.8°
ω scans h = −11→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −12→13
Tmin = 0.654, Tmax = 0.747 l = −14→14
7386 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.7756P] where P = (Fo2 + 2Fc2)/3
4218 reflections (Δ/σ)max = 0.001
294 parameters Δρmax = 1.25 e Å3
20 restraints Δρmin = −0.46 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.25749 (6) 0.66030 (6) 0.41290 (5) 0.03749 (18)
O1 0.63636 (17) 0.62389 (15) 0.14578 (12) 0.0305 (3)
N1 0.2933 (2) 1.01329 (17) 0.24918 (14) 0.0344 (4)
N2 0.16227 (18) 1.03258 (17) 0.67653 (13) 0.0251 (3)
N3 0.49398 (19) 0.73393 (17) 0.59776 (13) 0.0270 (4)
N4 0.43635 (19) 0.77111 (16) 0.29593 (13) 0.0240 (3)
H4 0.5199 0.7558 0.2524 0.029*
N5 0.48814 (18) 0.54112 (16) 0.26536 (13) 0.0235 (3)
H5 0.4773 0.4630 0.2898 0.028*
C1 0.2196 (5) 1.2331 (4) 0.0699 (3) 0.0388 (8) 0.592 (5)
H1A 0.1607 1.3010 0.0078 0.058* 0.592 (5)
H1B 0.2515 1.1353 0.0516 0.058* 0.592 (5)
H1C 0.3109 1.2470 0.0796 0.058* 0.592 (5)
C2 0.1198 (4) 1.2577 (3) 0.1793 (3) 0.0238 (7) 0.592 (5)
H2 0.0328 1.2349 0.1681 0.029* 0.592 (5)
C3 0.0504 (4) 1.4093 (4) 0.2080 (4) 0.0286 (11) 0.592 (5)
H3A −0.0277 1.4696 0.1520 0.034* 0.592 (5)
H3B 0.1320 1.4426 0.1998 0.034* 0.592 (5)
C4 −0.0245 (11) 1.4323 (12) 0.3259 (5) 0.0466 (10) 0.592 (5)
H4A −0.1133 1.4088 0.3331 0.056* 0.592 (5)
H4B −0.0628 1.5339 0.3389 0.056* 0.592 (5)
C1' 0.1144 (7) 1.2261 (6) 0.0836 (4) 0.0388 (8) 0.408
H1'A 0.0981 1.2943 0.0155 0.058* 0.408 (5)
H1'B 0.0150 1.2317 0.1156 0.058* 0.408 (5)
H1'C 0.1799 1.1291 0.0633 0.058* 0.408 (5)
C2' 0.1916 (6) 1.2618 (5) 0.1706 (4) 0.0238 (7) 0.408
H2' 0.2952 1.2502 0.1384 0.029* 0.408 (5)
C3' 0.1035 (7) 1.4112 (6) 0.2064 (5) 0.0286 (11) 0.408
H3'1 0.1780 1.4469 0.2214 0.034* 0.408 (5)
H3'2 0.0414 1.4746 0.1426 0.034* 0.408 (5)
C4' −0.0017 (15) 1.4211 (19) 0.3106 (6) 0.0466 (10) 0.408
H4'1 −0.0741 1.3818 0.2978 0.056* 0.408 (5)
H4'2 −0.0628 1.5225 0.3244 0.056* 0.408 (5)
C5 0.0917 (2) 1.3376 (2) 0.41467 (16) 0.0295 (4)
H5A 0.1619 1.3809 0.4228 0.035* 0.592 (5)
H5B 0.0354 1.3367 0.4888 0.035* 0.592 (5)
H5C 0.1599 1.3801 0.4302 0.035* 0.408 (5)
H5D 0.0233 1.3403 0.4829 0.035* 0.408 (5)
C6 0.1874 (2) 1.18481 (19) 0.38818 (16) 0.0255 (4)
C7 0.2144 (3) 1.1494 (2) 0.27625 (16) 0.0357 (5)
C8 0.2487 (2) 1.07401 (19) 0.47547 (15) 0.0217 (4)
C9 0.3370 (2) 0.93424 (19) 0.44573 (15) 0.0223 (4)
C10 0.3513 (2) 0.90956 (19) 0.33176 (16) 0.0249 (4)
C11 0.2239 (2) 1.10237 (18) 0.59522 (15) 0.0220 (4)
C12 0.2572 (2) 1.1937 (2) 0.64847 (16) 0.0253 (4)
H12 0.3007 1.2552 0.6133 0.030*
C13 0.2148 (2) 1.1790 (2) 0.76492 (16) 0.0298 (4)
H13 0.2259 1.2276 0.8228 0.036*
C14 0.1548 (2) 1.0819 (2) 0.77873 (16) 0.0291 (4)
H14 0.1143 1.0532 0.8484 0.035*
C15 0.0892 (2) 0.9433 (2) 0.65744 (19) 0.0334 (5)
H15A 0.1105 0.8670 0.7200 0.050*
H15B 0.1301 0.9011 0.5856 0.050*
H15C −0.0221 1.0016 0.6538 0.050*
C16 0.4215 (2) 0.82116 (19) 0.53048 (15) 0.0225 (4)
C17 0.3993 (2) 0.66125 (19) 0.32327 (16) 0.0244 (4)
C18 0.5910 (2) 0.53169 (19) 0.17416 (15) 0.0233 (4)
C19 0.6415 (2) 0.40659 (19) 0.10662 (15) 0.0244 (4)
C20 0.7465 (3) 0.4002 (2) 0.01627 (18) 0.0352 (5)
H20 0.7870 0.4686 0.0045 0.042*
C21 0.7924 (3) 0.2941 (2) −0.05700 (19) 0.0416 (6)
H21 0.8637 0.2905 −0.1189 0.050*
C22 0.7342 (3) 0.1942 (2) −0.03949 (18) 0.0371 (5)
H22 0.7655 0.1217 −0.0893 0.045*
C23 0.6301 (3) 0.1997 (2) 0.05058 (18) 0.0334 (5)
H23 0.5905 0.1306 0.0625 0.040*
C24 0.5832 (2) 0.3061 (2) 0.12401 (16) 0.0281 (4)
H24 0.5116 0.3097 0.1856 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0378 (3) 0.0290 (3) 0.0459 (3) −0.0144 (2) 0.0180 (2) −0.0197 (2)
O1 0.0407 (8) 0.0228 (7) 0.0261 (7) −0.0125 (6) 0.0078 (6) −0.0084 (5)
N1 0.0571 (11) 0.0163 (8) 0.0187 (8) −0.0045 (8) −0.0059 (7) −0.0047 (6)
N2 0.0255 (8) 0.0218 (8) 0.0216 (8) −0.0050 (6) 0.0024 (6) −0.0033 (6)
N3 0.0295 (8) 0.0211 (8) 0.0220 (8) −0.0038 (7) 0.0016 (6) −0.0031 (6)
N4 0.0301 (8) 0.0163 (7) 0.0192 (7) −0.0036 (6) 0.0019 (6) −0.0063 (6)
N5 0.0296 (8) 0.0146 (7) 0.0213 (8) −0.0047 (6) 0.0022 (6) −0.0057 (6)
C1 0.055 (2) 0.0305 (15) 0.0249 (14) −0.0156 (15) −0.0034 (14) 0.0055 (11)
C2 0.028 (2) 0.0185 (11) 0.0216 (12) −0.0078 (15) −0.0025 (14) −0.0007 (9)
C3 0.027 (3) 0.0208 (11) 0.0229 (11) 0.0015 (16) 0.0031 (17) 0.0022 (8)
C4 0.057 (3) 0.026 (2) 0.0306 (18) 0.0067 (18) −0.0013 (17) −0.0077 (17)
C1' 0.055 (2) 0.0305 (15) 0.0249 (14) −0.0156 (15) −0.0034 (14) 0.0055 (11)
C2' 0.028 (2) 0.0185 (11) 0.0216 (12) −0.0078 (15) −0.0025 (14) −0.0007 (9)
C3' 0.027 (3) 0.0208 (11) 0.0229 (11) 0.0015 (16) 0.0031 (17) 0.0022 (8)
C4' 0.057 (3) 0.026 (2) 0.0306 (18) 0.0067 (18) −0.0013 (17) −0.0077 (17)
C5 0.0386 (11) 0.0161 (9) 0.0231 (9) −0.0013 (8) −0.0022 (8) −0.0050 (7)
C6 0.0326 (10) 0.0163 (9) 0.0215 (9) −0.0041 (7) −0.0028 (7) −0.0050 (7)
C7 0.0585 (14) 0.0157 (9) 0.0199 (9) −0.0030 (9) −0.0064 (9) −0.0036 (7)
C8 0.0233 (8) 0.0188 (9) 0.0193 (9) −0.0050 (7) −0.0004 (7) −0.0049 (7)
C9 0.0247 (9) 0.0173 (9) 0.0196 (9) −0.0042 (7) −0.0002 (7) −0.0032 (7)
C10 0.0317 (10) 0.0166 (9) 0.0212 (9) −0.0047 (7) −0.0009 (7) −0.0056 (7)
C11 0.0225 (8) 0.0165 (8) 0.0189 (8) −0.0014 (7) 0.0013 (6) −0.0030 (6)
C12 0.0300 (9) 0.0189 (9) 0.0208 (9) −0.0045 (7) 0.0022 (7) −0.0068 (7)
C13 0.0363 (10) 0.0239 (10) 0.0196 (9) −0.0034 (8) 0.0000 (7) −0.0073 (7)
C14 0.0314 (10) 0.0279 (10) 0.0172 (9) −0.0038 (8) 0.0042 (7) −0.0036 (7)
C15 0.0312 (10) 0.0335 (11) 0.0349 (11) −0.0145 (9) 0.0041 (8) −0.0043 (9)
C16 0.0246 (9) 0.0182 (9) 0.0193 (8) −0.0043 (7) 0.0048 (7) −0.0070 (7)
C17 0.0282 (9) 0.0169 (9) 0.0214 (9) −0.0029 (7) −0.0008 (7) −0.0059 (7)
C18 0.0274 (9) 0.0168 (8) 0.0191 (8) −0.0030 (7) −0.0018 (7) −0.0043 (7)
C19 0.0284 (9) 0.0167 (9) 0.0199 (9) −0.0011 (7) −0.0031 (7) −0.0049 (7)
C20 0.0436 (12) 0.0252 (10) 0.0298 (10) −0.0087 (9) 0.0092 (9) −0.0109 (8)
C21 0.0521 (14) 0.0286 (11) 0.0304 (11) −0.0050 (10) 0.0106 (10) −0.0129 (9)
C22 0.0472 (12) 0.0226 (10) 0.0279 (10) 0.0007 (9) −0.0066 (9) −0.0125 (8)
C23 0.0417 (11) 0.0218 (10) 0.0322 (11) −0.0062 (9) −0.0093 (9) −0.0096 (8)
C24 0.0344 (10) 0.0222 (9) 0.0230 (9) −0.0064 (8) −0.0041 (8) −0.0065 (7)

Geometric parameters (Å, °)

S1—C17 1.657 (2) C3'—H3'2 0.9900
O1—C18 1.226 (2) C4'—C5 1.532 (9)
N1—C10 1.320 (2) C4'—H4'1 0.9900
N1—C7 1.354 (2) C4'—H4'2 0.9900
N2—C14 1.366 (3) C5—C6 1.513 (2)
N2—C11 1.382 (2) C5—H5A 0.9900
N2—C15 1.452 (3) C5—H5B 0.9900
N3—C16 1.147 (2) C5—H5C 0.9900
N4—C17 1.344 (3) C5—H5D 0.9900
N4—C10 1.416 (2) C6—C7 1.398 (3)
N4—H4 0.8800 C6—C8 1.402 (3)
N5—C18 1.380 (2) C8—C9 1.405 (2)
N5—C17 1.399 (2) C8—C11 1.468 (2)
N5—H5 0.8800 C9—C10 1.395 (3)
C1—C2 1.521 (4) C9—C16 1.440 (2)
C1—H1A 0.9800 C11—C12 1.379 (3)
C1—H1B 0.9800 C12—C13 1.412 (3)
C1—H1C 0.9800 C12—H12 0.9500
C2—C3 1.500 (5) C13—C14 1.366 (3)
C2—C7 1.547 (3) C13—H13 0.9500
C2—H2 1.0000 C14—H14 0.9500
C3—C4 1.511 (6) C15—H15A 0.9800
C3—H3A 0.9900 C15—H15B 0.9800
C3—H3B 0.9900 C15—H15C 0.9800
C4—C5 1.527 (7) C18—C19 1.497 (2)
C4—H4A 0.9900 C19—C24 1.386 (3)
C4—H4B 0.9900 C19—C20 1.391 (3)
C1'—C2' 1.510 (6) C20—C21 1.393 (3)
C1'—H1'A 0.9800 C20—H20 0.9500
C1'—H1'B 0.9800 C21—C22 1.380 (4)
C1'—H1'C 0.9800 C21—H21 0.9500
C2'—C3' 1.513 (6) C22—C23 1.385 (3)
C2'—C7 1.563 (5) C22—H22 0.9500
C2'—H2' 1.0000 C23—C24 1.396 (3)
C3'—C4' 1.508 (9) C23—H23 0.9500
C3'—H3'1 0.9900 C24—H24 0.9500
C10—N1—C7 118.70 (16) C6—C5—H5C 109.8
C14—N2—C11 108.27 (16) C4—C5—H5C 111.7
C14—N2—C15 123.49 (17) C4'—C5—H5C 109.7
C11—N2—C15 127.26 (17) C6—C5—H5D 110.1
C17—N4—C10 125.08 (16) C4—C5—H5D 101.5
C17—N4—H4 117.5 C4'—C5—H5D 111.1
C10—N4—H4 117.5 H5C—C5—H5D 108.3
C18—N5—C17 127.16 (16) C7—C6—C8 117.99 (17)
C18—N5—H5 116.4 C7—C6—C5 121.05 (17)
C17—N5—H5 116.4 C8—C6—C5 120.94 (16)
C2—C1—H1A 109.5 N1—C7—C6 122.96 (17)
C2—C1—H1B 109.5 N1—C7—C2 114.67 (19)
H1A—C1—H1B 109.5 C6—C7—C2 120.51 (19)
C2—C1—H1C 109.5 N1—C7—C2' 112.4 (2)
H1A—C1—H1C 109.5 C6—C7—C2' 123.2 (2)
H1B—C1—H1C 109.5 C6—C8—C9 118.42 (16)
C3—C2—C1 113.7 (3) C6—C8—C11 121.25 (16)
C3—C2—C7 112.8 (3) C9—C8—C11 120.33 (16)
C1—C2—C7 108.8 (3) C10—C9—C8 118.92 (16)
C3—C2—H2 107.1 C10—C9—C16 120.70 (16)
C1—C2—H2 107.1 C8—C9—C16 120.18 (16)
C7—C2—H2 107.1 N1—C10—C9 122.84 (17)
C2—C3—C4 115.0 (5) N1—C10—N4 115.13 (16)
C2—C3—H3A 108.5 C9—C10—N4 121.96 (16)
C4—C3—H3A 108.5 C12—C11—N2 107.94 (16)
C2—C3—H3B 108.5 C12—C11—C8 129.53 (17)
C4—C3—H3B 108.5 N2—C11—C8 122.51 (17)
H3A—C3—H3B 107.5 C11—C12—C13 107.41 (18)
C3—C4—C5 110.0 (5) C11—C12—H12 126.3
C3—C4—H4A 109.7 C13—C12—H12 126.3
C5—C4—H4A 109.7 C14—C13—C12 107.14 (17)
C3—C4—H4B 109.7 C14—C13—H13 126.4
C5—C4—H4B 109.7 C12—C13—H13 126.4
H4A—C4—H4B 108.2 N2—C14—C13 109.21 (17)
C2'—C1'—H1'A 109.5 N2—C14—H14 125.4
C2'—C1'—H1'B 109.5 C13—C14—H14 125.4
H1'A—C1'—H1'B 109.5 N2—C15—H15A 109.5
C2'—C1'—H1'C 109.5 N2—C15—H15B 109.5
H1'A—C1'—H1'C 109.5 H15A—C15—H15B 109.5
H1'B—C1'—H1'C 109.5 N2—C15—H15C 109.5
C1'—C2'—C3' 114.5 (4) H15A—C15—H15C 109.5
C1'—C2'—C7 106.8 (4) H15B—C15—H15C 109.5
C3'—C2'—C7 109.8 (4) N3—C16—C9 176.5 (2)
C1'—C2'—H2' 108.5 N4—C17—N5 114.65 (16)
C3'—C2'—H2' 108.5 N4—C17—S1 125.98 (14)
C7—C2'—H2' 108.5 N5—C17—S1 119.31 (14)
C4'—C3'—C2' 114.1 (8) O1—C18—N5 122.12 (16)
C4'—C3'—H3'1 108.7 O1—C18—C19 120.29 (17)
C2'—C3'—H3'1 108.7 N5—C18—C19 117.55 (16)
C4'—C3'—H3'2 108.7 C24—C19—C20 119.68 (18)
C2'—C3'—H3'2 108.7 C24—C19—C18 124.42 (17)
H3'1—C3'—H3'2 107.6 C20—C19—C18 115.74 (18)
C3'—C4'—C5 110.5 (8) C19—C20—C21 120.4 (2)
C3'—C4'—H4'1 109.6 C19—C20—H20 119.8
C5—C4'—H4'1 109.6 C21—C20—H20 119.8
C3'—C4'—H4'2 109.6 C22—C21—C20 119.8 (2)
C5—C4'—H4'2 109.6 C22—C21—H21 120.1
H4'1—C4'—H4'2 108.1 C20—C21—H21 120.1
C6—C5—C4 114.9 (4) C21—C22—C23 120.07 (19)
C6—C5—C4' 107.8 (6) C21—C22—H22 120.0
C4—C5—C4' 10.0 (5) C23—C22—H22 120.0
C6—C5—H5A 108.5 C22—C23—C24 120.4 (2)
C4—C5—H5A 108.5 C22—C23—H23 119.8
C4'—C5—H5A 105.9 C24—C23—H23 119.8
C6—C5—H5B 108.5 C19—C24—C23 119.7 (2)
C4—C5—H5B 108.5 C19—C24—H24 120.2
C4'—C5—H5B 118.2 C23—C24—H24 120.2
H5A—C5—H5B 107.5
C1—C2—C3—C4 −169.1 (6) C7—N1—C10—C9 −1.1 (3)
C7—C2—C3—C4 −44.7 (7) C7—N1—C10—N4 −178.1 (2)
C2—C3—C4—C5 56.7 (12) C8—C9—C10—N1 4.3 (3)
C1'—C2'—C3'—C4' 92.8 (9) C16—C9—C10—N1 −170.5 (2)
C7—C2'—C3'—C4' −27.3 (9) C8—C9—C10—N4 −178.92 (18)
C2'—C3'—C4'—C5 64.7 (16) C16—C9—C10—N4 6.2 (3)
C3—C4—C5—C6 −45.1 (12) C17—N4—C10—N1 −117.5 (2)
C3—C4—C5—C4' 0(8) C17—N4—C10—C9 65.6 (3)
C3'—C4'—C5—C6 −57.1 (15) C14—N2—C11—C12 1.0 (2)
C3'—C4'—C5—C4 166 (10) C15—N2—C11—C12 169.90 (18)
C4—C5—C6—C7 25.2 (6) C14—N2—C11—C8 179.69 (16)
C4'—C5—C6—C7 17.8 (8) C15—N2—C11—C8 −11.5 (3)
C4—C5—C6—C8 −153.3 (6) C6—C8—C11—C12 −56.1 (3)
C4'—C5—C6—C8 −160.7 (8) C9—C8—C11—C12 123.0 (2)
C10—N1—C7—C6 −2.0 (4) C6—C8—C11—N2 125.6 (2)
C10—N1—C7—C2 −166.5 (2) C9—C8—C11—N2 −55.3 (3)
C10—N1—C7—C2' 164.6 (3) N2—C11—C12—C13 0.0 (2)
C8—C6—C7—N1 1.6 (4) C8—C11—C12—C13 −178.49 (18)
C5—C6—C7—N1 −176.9 (2) C11—C12—C13—C14 −1.1 (2)
C8—C6—C7—C2 165.3 (2) C11—N2—C14—C13 −1.8 (2)
C5—C6—C7—C2 −13.2 (4) C15—N2—C14—C13 −171.12 (18)
C8—C6—C7—C2' −163.5 (3) C12—C13—C14—N2 1.7 (2)
C5—C6—C7—C2' 17.9 (4) C10—C9—C16—N3 100 (3)
C3—C2—C7—N1 −172.9 (3) C8—C9—C16—N3 −75 (3)
C1—C2—C7—N1 −45.7 (4) C10—N4—C17—N5 171.52 (17)
C3—C2—C7—C6 22.2 (4) C10—N4—C17—S1 −5.9 (3)
C1—C2—C7—C6 149.3 (3) C18—N5—C17—N4 −10.1 (3)
C3—C2—C7—C2' −81.8 (5) C18—N5—C17—S1 167.55 (15)
C1—C2—C7—C2' 45.4 (5) C17—N5—C18—O1 13.3 (3)
C1'—C2'—C7—N1 55.5 (4) C17—N5—C18—C19 −164.14 (17)
C3'—C2'—C7—N1 −179.8 (4) O1—C18—C19—C24 −172.29 (18)
C1'—C2'—C7—C6 −138.0 (4) N5—C18—C19—C24 5.2 (3)
C3'—C2'—C7—C6 −13.2 (5) O1—C18—C19—C20 3.2 (3)
C1'—C2'—C7—C2 −45.2 (5) N5—C18—C19—C20 −179.29 (17)
C3'—C2'—C7—C2 79.6 (6) C24—C19—C20—C21 0.4 (3)
C7—C6—C8—C9 1.6 (3) C18—C19—C20—C21 −175.3 (2)
C5—C6—C8—C9 −179.84 (18) C19—C20—C21—C22 −0.4 (4)
C7—C6—C8—C11 −179.3 (2) C20—C21—C22—C23 0.1 (3)
C5—C6—C8—C11 −0.7 (3) C21—C22—C23—C24 0.2 (3)
C6—C8—C9—C10 −4.4 (3) C20—C19—C24—C23 −0.1 (3)
C11—C8—C9—C10 176.45 (18) C18—C19—C24—C23 175.20 (18)
C6—C8—C9—C16 170.46 (18) C22—C23—C24—C19 −0.2 (3)
C11—C8—C9—C16 −8.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4···O1 0.88 1.90 2.594 (2) 135
N5—H5···N3i 0.88 2.22 3.058 (2) 158

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5613).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Cocco, M. T., Congiu, C., Lilliu, V. & Onnis, V. (2005). Eur. J. Med. Chem. 40, 1365–1372. [DOI] [PubMed]
  4. El-Hawash, S. A. M., Abdel-Wahab, A. E. & El-Demellawy, M. A. (2006). Arch. Pharm. Chem. Life Sci. 339, 437–447.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033046/bt5613sup1.cif

e-67-o2430-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033046/bt5613Isup2.hkl

e-67-o2430-Isup2.hkl (206.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033046/bt5613Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES