Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 6;67(Pt 9):m1201–m1202. doi: 10.1107/S1600536811031163

catena-Poly[[bis­[[bis­(3-amino­prop­yl)amine-κ3 N,N′,N′′](thio­cyanato-κN)cadmium]-μ4-sulfato-κ4 O,O:O′,O′] methanol hemisolvate]

Jan Boeckmann a,*, Christian Näther a
PMCID: PMC3200697  PMID: 22058845

Abstract

The asymmetric unit of the title compound, {[Cd2(NCS)2(SO4)(C6H17N3)2]·0.5CH3OH}n, consists of two Cd2+ cations, two thio­cyanate and one sulfate anion, two bis­(3-amino­prop­yl)amine co-ligands and one methanol molecule with half-occupancy. Each Cd2+ cation is coordinated by four N atoms of one terminal N-bonded thio­cyanate anion and one bis­(3-amino­prop­yl)amine co-ligand, and by two O atoms of two symmetry-related sulfate anions, defining a slightly distorted octa­hedral coordination polyhedron. Each two Cd2+ cations are connected into dimers, which are located on centres of inversion and which are further μ-1,1:3,3-bridged via the sulfate anions into polymeric zigzag chains along the a axis.

Related literature

For background information about thermal decomposition reactions and the resulting inter­mediates, see: Boeckmann & Näther (2010, 2011); Boeckmann et al. (2011); Wöhlert et al. (2011); Wriedt et al. (2009a ,b ); Wriedt & Näther (2010). graphic file with name e-67-m1201-scheme1.jpg

Experimental

Crystal data

  • [Cd2(NCS)2(SO4)(C6H17N3)2]·0.5CH4O

  • M r = 715.49

  • Triclinic, Inline graphic

  • a = 10.6648 (9) Å

  • b = 12.4441 (12) Å

  • c = 12.9240 (12) Å

  • α = 61.359 (10)°

  • β = 69.064 (10)°

  • γ = 68.772 (10)°

  • V = 1367.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 200 K

  • 0.18 × 0.13 × 0.09 mm

Data collection

  • STOE IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) T min = 0.746, T max = 0.841

  • 12730 measured reflections

  • 5736 independent reflections

  • 4365 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.113

  • S = 1.07

  • 5736 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.87 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031163/bt5596sup1.cif

e-67-m1201-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031163/bt5596Isup2.hkl

e-67-m1201-Isup2.hkl (280.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N11 2.248 (4)
Cd1—N13 2.250 (5)
Cd1—N1 2.347 (5)
Cd1—N12 2.351 (5)
Cd1—O1i 2.388 (3)
Cd1—O1 2.619 (3)
Cd2—N23 2.247 (5)
Cd2—N21 2.250 (5)
Cd2—N2 2.283 (6)
Cd2—N22 2.374 (4)
Cd2—O3 2.386 (3)
Cd2—O3ii 2.676 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support by the DFG (project number NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. Special thanks go to Inke Jess for her support of the single-crystal measurements.

supplementary crystallographic information

Comment

Recently, we reported about the thermal decomposition reaction as a tool for the selective synthesis of one-dimensional and two-dimensional coordination compounds [Boeckmann & Näther (2010); Boeckmann & Näther (2011); Boeckmann et al. (2011); Wöhlert et al. (2011); Wriedt et al. (2009a,b); Wriedt & Näther (2010)]. In this approach precursors based on paramagnetic transition metal thio- and selenocyanates and bidentate and monodentate N-donor co-ligands are heated leading to a stepwise loss of the neutral co-ligands and the formation of higher condensed networks with modified magnetic exchange interactions. Unfortunately, structure determination of the ligand-deficient intermediates is very often difficult to achieve because most of them can only prepared by thermal decomposition which leads to powders of very poor crystallinity. This problem can be overcome by preparing similar compounds based on cadmium(II) thio- and selenocyanates, which can easily be crystallized from solution and which are very often isotypic to their paramagnetic counterparts. In this case the structures of the paramagnetic intermediates can simply be determined using the Rietveld method. In this connection, we tried to prepare a ligand-deficient intermediate on the basis of Cd(NCS)2 and the tridentate co-ligand bis(3-aminopropyl)amine. Surprisingly a mixed anionic chain structure was obtained which was characterized by single crystal X-ray diffraction.

In the crystal structure of the title compound the cadmium(II) cations are coordinated by four nitrogen atoms of one terminal N-bonded thiocyanato anion, one tridentate co-ligand bis(3-aminopropyl)amine and two oxygen atoms of two symmetry related sulfate anions within a slightly distorted octahedral coordination geometry (Fig.1 and Tab.1). One of the Cd-O distances to Cd2 of 2.676 (4) Å is slightly elongated. These octahedra are bridged via the sulfur oxygen atoms into dimeric Cd2+ units that are located on centers of inversion. These units are further connected into zigzag chains that elongate in the direction of the crystallographic a axis (Fig.2).

Experimental

The title compound was prepared by the reaction of 128.2 mg CdSO4.8/3H2O (0.50 mmol), 153.8 mg Ba(NCS)2.3H2O (0.50 mmol) and 35.2 µL bis(3-aminopropyl)amine (0.25 mmol) in 1.50 ml methanol at RT in a closed 3 ml snap cap vial. After two days colourless blocks of the title compound were obtained.

Refinement

The position of the methanol molecule seems to be occupied to only 50%. If full occupation is assumed, unusual large anisotropic displacement parameters and higher R values are obtained. If an s.o.f. of 0.5 is used, all reliabilty factors drop down, the anisotropic displacement ellipsoids looks reasonable and no residual electron density indicating disorder is found.

All H atoms were were positioned with idealized geometry (O-H allowed to rotate but not to tip) and were refined using a riding model with Ueq(H) = 1.2 Ueq(C,N) or Ueq(H) = 1.5 Ueq(H) = 1.5 Ueq(O) with C—H = 0.99 Å (CH2), C—H = 0.98 Å (CH3), O—H = 0.84 Å (OH), N—H = 0.93 Å (NH1) and N—H = 0.92 Å (NH2).

Figures

Fig. 1.

Fig. 1.

: Crystal structure of the title compound, showing the coordination around the Cd2+ cations with labelling and displacement ellipsoids drawn at the 50% probability level. The H-atoms are omitted for clarity.

Fig. 2.

Fig. 2.

: Packing diagram of the title compound with view along the crystallographic c axis (aqua = cadmium; yellow = sulfur; red = oxygen; blue = nitrogen; black = carbon; light-grey = hydrogen).

Crystal data

[Cd2(NCS)2(SO4)(C6H17N3)2]·0.5CH4O Z = 2
Mr = 715.49 F(000) = 718
Triclinic, P1 Dx = 1.738 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.6648 (9) Å Cell parameters from 13797 reflections
b = 12.4441 (12) Å θ = 2.5–27.0°
c = 12.9240 (12) Å µ = 1.82 mm1
α = 61.359 (10)° T = 200 K
β = 69.064 (10)° Block, colourless
γ = 68.772 (10)° 0.18 × 0.13 × 0.09 mm
V = 1367.3 (2) Å3

Data collection

STOE IPDS-1 diffractometer 5736 independent reflections
Radiation source: fine-focus sealed tube 4365 reflections with I > 2σ(I)
graphite Rint = 0.040
Phi scans θmax = 27.0°, θmin = 2.5°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) h = −13→13
Tmin = 0.746, Tmax = 0.841 k = −15→15
12730 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0508P)2 + 3.6107P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
5736 reflections Δρmax = 1.07 e Å3
301 parameters Δρmin = −0.87 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0113 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cd1 0.58718 (4) 0.60656 (4) 0.33218 (3) 0.02703 (13)
Cd2 0.13789 (4) 0.35828 (4) 0.45817 (4) 0.03022 (14)
N1 0.7929 (5) 0.6709 (5) 0.2127 (5) 0.0374 (12)
C1 0.8391 (7) 0.7302 (7) 0.1166 (7) 0.0464 (16)
S1 0.9043 (3) 0.8167 (3) −0.0225 (2) 0.0857 (8)
N2 0.3704 (6) 0.2779 (6) 0.4148 (6) 0.0497 (15)
C2 0.4515 (6) 0.2311 (5) 0.3503 (6) 0.0344 (13)
S2 0.5669 (2) 0.1683 (2) 0.2620 (2) 0.0638 (6)
S3 0.23030 (13) 0.59733 (11) 0.45203 (11) 0.0225 (3)
O1 0.3696 (4) 0.5152 (3) 0.4693 (3) 0.0237 (7)
O2 0.1952 (4) 0.6886 (4) 0.5048 (4) 0.0341 (9)
O3 0.1277 (4) 0.5182 (3) 0.5148 (3) 0.0248 (7)
O4 0.2301 (4) 0.6606 (4) 0.3235 (3) 0.0358 (9)
N11 0.4780 (5) 0.7650 (4) 0.3937 (4) 0.0314 (10)
H11A 0.3903 0.7550 0.4365 0.038*
H11B 0.5233 0.7579 0.4461 0.038*
N12 0.4885 (5) 0.7225 (5) 0.1623 (4) 0.0335 (11)
H12 0.3988 0.7116 0.1897 0.040*
N13 0.6435 (5) 0.4318 (5) 0.2982 (4) 0.0328 (11)
H13A 0.7145 0.3756 0.3353 0.039*
H13B 0.5688 0.3957 0.3348 0.039*
C11 0.4672 (7) 0.8939 (6) 0.2973 (6) 0.0451 (16)
H11C 0.5611 0.9083 0.2545 0.054*
H11D 0.4176 0.9555 0.3346 0.054*
C12 0.3922 (7) 0.9159 (6) 0.2065 (6) 0.0490 (17)
H12A 0.3086 0.8818 0.2515 0.059*
H12B 0.3612 1.0079 0.1620 0.059*
C13 0.4749 (7) 0.8584 (6) 0.1151 (6) 0.0457 (16)
H13C 0.4304 0.9011 0.0455 0.055*
H13D 0.5684 0.8747 0.0847 0.055*
C14 0.5532 (7) 0.6788 (7) 0.0627 (5) 0.0433 (15)
H14A 0.6449 0.6991 0.0227 0.052*
H14B 0.4957 0.7254 0.0019 0.052*
C15 0.5708 (8) 0.5377 (7) 0.1047 (6) 0.0468 (17)
H15A 0.4827 0.5156 0.1590 0.056*
H15B 0.5865 0.5210 0.0330 0.056*
C16 0.6857 (8) 0.4500 (7) 0.1701 (6) 0.0454 (16)
H16A 0.7104 0.3676 0.1652 0.054*
H16B 0.7684 0.4857 0.1300 0.054*
N21 0.1109 (6) 0.4989 (5) 0.2712 (4) 0.0381 (12)
H21A 0.0189 0.5387 0.2760 0.046*
H21B 0.1585 0.5590 0.2463 0.046*
N22 0.0976 (5) 0.2022 (5) 0.4261 (5) 0.0375 (12)
H22 0.0022 0.2148 0.4444 0.045*
N23 0.0807 (5) 0.2394 (4) 0.6569 (4) 0.0324 (10)
H23A 0.1097 0.2661 0.6978 0.039*
H23B −0.0140 0.2544 0.6804 0.039*
C21 0.1564 (8) 0.4493 (7) 0.1779 (6) 0.0502 (17)
H21C 0.2576 0.4155 0.1647 0.060*
H21D 0.1359 0.5191 0.1010 0.060*
C22 0.0864 (9) 0.3446 (8) 0.2112 (6) 0.057 (2)
H22A −0.0130 0.3704 0.2459 0.068*
H22B 0.0938 0.3378 0.1358 0.068*
C23 0.1440 (7) 0.2160 (7) 0.2992 (7) 0.0475 (17)
H23C 0.1164 0.1521 0.2926 0.057*
H23D 0.2461 0.1990 0.2762 0.057*
C24 0.1475 (7) 0.0726 (6) 0.5072 (7) 0.0476 (17)
H24A 0.2490 0.0549 0.4933 0.057*
H24B 0.1265 0.0146 0.4869 0.057*
C25 0.0848 (8) 0.0459 (6) 0.6396 (7) 0.0489 (17)
H25A 0.1021 −0.0465 0.6857 0.059*
H25B −0.0164 0.0789 0.6499 0.059*
C26 0.1370 (8) 0.1009 (6) 0.6962 (7) 0.0488 (17)
H26A 0.1094 0.0595 0.7855 0.059*
H26B 0.2391 0.0829 0.6728 0.059*
O31 0.1929 (15) 0.7375 (11) 0.0583 (11) 0.076 (4) 0.50
H31 0.2769 0.7008 0.0475 0.114* 0.50
C31 0.1801 (14) 0.8574 (13) 0.0413 (12) 0.050 (4) 0.50
H31A 0.1703 0.8593 0.1188 0.075* 0.50
H31B 0.0983 0.9125 0.0087 0.075* 0.50
H31C 0.2624 0.8868 −0.0158 0.075* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0291 (2) 0.0297 (2) 0.0207 (2) −0.00729 (16) −0.00580 (15) −0.00850 (15)
Cd2 0.0294 (3) 0.0346 (2) 0.0326 (2) −0.00777 (17) −0.00505 (17) −0.01921 (18)
N1 0.031 (3) 0.052 (3) 0.033 (3) −0.020 (2) −0.010 (2) −0.010 (2)
C1 0.044 (4) 0.062 (4) 0.051 (4) −0.018 (3) −0.005 (3) −0.036 (4)
S1 0.119 (2) 0.107 (2) 0.0407 (11) −0.0754 (18) 0.0075 (12) −0.0195 (12)
N2 0.029 (3) 0.070 (4) 0.072 (4) −0.004 (3) −0.010 (3) −0.052 (4)
C2 0.030 (3) 0.033 (3) 0.047 (3) −0.009 (2) −0.013 (3) −0.016 (3)
S2 0.0483 (11) 0.0642 (12) 0.0892 (15) −0.0107 (9) 0.0066 (10) −0.0557 (12)
S3 0.0163 (6) 0.0281 (6) 0.0226 (6) −0.0081 (5) −0.0038 (4) −0.0080 (5)
O1 0.0176 (19) 0.0311 (18) 0.0237 (17) −0.0043 (15) −0.0064 (14) −0.0117 (15)
O2 0.023 (2) 0.035 (2) 0.051 (2) −0.0062 (17) −0.0077 (17) −0.0233 (19)
O3 0.0214 (19) 0.0316 (19) 0.0236 (18) −0.0142 (15) 0.0006 (14) −0.0111 (15)
O4 0.022 (2) 0.050 (2) 0.0214 (18) −0.0120 (18) −0.0080 (15) 0.0009 (17)
N11 0.036 (3) 0.031 (2) 0.033 (2) −0.012 (2) −0.007 (2) −0.015 (2)
N12 0.030 (3) 0.044 (3) 0.018 (2) −0.017 (2) −0.0042 (18) −0.0005 (19)
N13 0.034 (3) 0.040 (3) 0.031 (2) −0.015 (2) −0.002 (2) −0.018 (2)
C11 0.046 (4) 0.027 (3) 0.055 (4) −0.014 (3) −0.006 (3) −0.011 (3)
C12 0.037 (4) 0.034 (3) 0.048 (4) −0.004 (3) −0.008 (3) 0.001 (3)
C13 0.044 (4) 0.042 (3) 0.033 (3) −0.017 (3) −0.010 (3) 0.004 (3)
C14 0.041 (4) 0.068 (4) 0.020 (3) −0.027 (3) −0.002 (2) −0.010 (3)
C15 0.050 (4) 0.076 (5) 0.030 (3) −0.031 (4) −0.002 (3) −0.026 (3)
C16 0.053 (4) 0.059 (4) 0.035 (3) −0.025 (3) 0.003 (3) −0.028 (3)
N21 0.038 (3) 0.046 (3) 0.030 (3) −0.011 (2) −0.002 (2) −0.018 (2)
N22 0.026 (3) 0.045 (3) 0.057 (3) −0.005 (2) −0.007 (2) −0.036 (3)
N23 0.029 (3) 0.035 (3) 0.034 (3) −0.007 (2) −0.009 (2) −0.013 (2)
C21 0.044 (4) 0.070 (5) 0.029 (3) −0.009 (3) 0.004 (3) −0.026 (3)
C22 0.059 (5) 0.089 (6) 0.042 (4) −0.018 (4) −0.010 (3) −0.041 (4)
C23 0.038 (4) 0.063 (4) 0.064 (4) −0.005 (3) −0.011 (3) −0.048 (4)
C24 0.043 (4) 0.038 (3) 0.076 (5) −0.008 (3) −0.015 (3) −0.033 (3)
C25 0.047 (4) 0.030 (3) 0.070 (5) −0.005 (3) −0.017 (3) −0.020 (3)
C26 0.055 (5) 0.033 (3) 0.052 (4) −0.003 (3) −0.025 (3) −0.008 (3)
O31 0.101 (11) 0.064 (7) 0.055 (7) −0.020 (7) −0.039 (7) −0.001 (6)
C31 0.034 (8) 0.058 (9) 0.039 (7) −0.020 (6) −0.027 (6) 0.014 (6)

Geometric parameters (Å, °)

Cd1—N11 2.248 (4) C14—C15 1.528 (10)
Cd1—N13 2.250 (5) C14—H14A 0.9900
Cd1—N1 2.347 (5) C14—H14B 0.9900
Cd1—N12 2.351 (5) C15—C16 1.515 (11)
Cd1—O1i 2.388 (3) C15—H15A 0.9900
Cd1—O1 2.619 (3) C15—H15B 0.9900
Cd2—N23 2.247 (5) C16—H16A 0.9900
Cd2—N21 2.250 (5) C16—H16B 0.9900
Cd2—N2 2.283 (6) N21—C21 1.466 (8)
Cd2—N22 2.374 (4) N21—H21A 0.9200
Cd2—O3 2.386 (3) N21—H21B 0.9200
Cd2—O3ii 2.676 (4) N22—C24 1.463 (9)
N1—C1 1.130 (8) N22—C23 1.475 (8)
C1—S1 1.633 (8) N22—H22 0.9300
N2—C2 1.169 (8) N23—C26 1.489 (8)
C2—S2 1.607 (6) N23—H23A 0.9200
S3—O4 1.458 (4) N23—H23B 0.9200
S3—O2 1.465 (4) C21—C22 1.542 (11)
S3—O3 1.485 (3) C21—H21C 0.9900
S3—O1 1.490 (4) C21—H21D 0.9900
O1—Cd1i 2.388 (3) C22—C23 1.508 (11)
N11—C11 1.480 (7) C22—H22A 0.9900
N11—H11A 0.9200 C22—H22B 0.9900
N11—H11B 0.9200 C23—H23C 0.9900
N12—C13 1.466 (8) C23—H23D 0.9900
N12—C14 1.480 (8) C24—C25 1.510 (10)
N12—H12 0.9300 C24—H24A 0.9900
N13—C16 1.476 (7) C24—H24B 0.9900
N13—H13A 0.9200 C25—C26 1.537 (10)
N13—H13B 0.9200 C25—H25A 0.9900
C11—C12 1.515 (10) C25—H25B 0.9900
C11—H11C 0.9900 C26—H26A 0.9900
C11—H11D 0.9900 C26—H26B 0.9900
C12—C13 1.515 (10) O31—C31 1.362 (18)
C12—H12A 0.9900 O31—H31 0.8400
C12—H12B 0.9900 C31—H31A 0.9800
C13—H13C 0.9900 C31—H31B 0.9800
C13—H13D 0.9900 C31—H31C 0.9800
N11—Cd1—N13 164.76 (17) C15—C14—H14A 108.9
N11—Cd1—N1 99.40 (18) N12—C14—H14B 108.9
N13—Cd1—N1 95.82 (18) C15—C14—H14B 108.9
N11—Cd1—N12 89.43 (18) H14A—C14—H14B 107.7
N13—Cd1—N12 89.82 (18) C16—C15—C14 117.0 (5)
N1—Cd1—N12 89.72 (17) C16—C15—H15A 108.0
N11—Cd1—O1i 85.80 (15) C14—C15—H15A 108.0
N13—Cd1—O1i 91.31 (15) C16—C15—H15B 108.0
N1—Cd1—O1i 104.15 (15) C14—C15—H15B 108.0
N12—Cd1—O1i 165.89 (14) H15A—C15—H15B 107.3
N11—Cd1—O1 84.77 (14) N13—C16—C15 111.0 (5)
N13—Cd1—O1 80.07 (14) N13—C16—H16A 109.4
N1—Cd1—O1 175.20 (16) C15—C16—H16A 109.4
N12—Cd1—O1 92.73 (14) N13—C16—H16B 109.4
O1i—Cd1—O1 73.63 (13) C15—C16—H16B 109.4
N23—Cd2—N21 159.07 (19) H16A—C16—H16B 108.0
N23—Cd2—N2 101.4 (2) C21—N21—Cd2 116.5 (4)
N21—Cd2—N2 99.3 (2) C21—N21—H21A 108.2
N23—Cd2—N22 86.47 (18) Cd2—N21—H21A 108.2
N21—Cd2—N22 90.32 (19) C21—N21—H21B 108.2
N2—Cd2—N22 90.40 (18) Cd2—N21—H21B 108.2
N23—Cd2—O3 86.86 (14) H21A—N21—H21B 107.3
N21—Cd2—O3 92.16 (15) C24—N22—C23 110.7 (5)
N2—Cd2—O3 101.23 (16) C24—N22—Cd2 114.7 (4)
N22—Cd2—O3 167.55 (15) C23—N22—Cd2 114.1 (4)
C1—N1—Cd1 140.6 (5) C24—N22—H22 105.4
N1—C1—S1 179.4 (9) C23—N22—H22 105.4
C2—N2—Cd2 138.6 (5) Cd2—N22—H22 105.4
N2—C2—S2 178.1 (6) C26—N23—Cd2 116.8 (4)
O4—S3—O2 111.1 (3) C26—N23—H23A 108.1
O4—S3—O3 108.7 (2) Cd2—N23—H23A 108.1
O2—S3—O3 109.5 (2) C26—N23—H23B 108.1
O4—S3—O1 109.9 (2) Cd2—N23—H23B 108.1
O2—S3—O1 108.6 (2) H23A—N23—H23B 107.3
O3—S3—O1 109.1 (2) N21—C21—C22 113.1 (5)
S3—O1—Cd1i 120.41 (19) N21—C21—H21C 109.0
S3—O1—Cd1 118.74 (19) C22—C21—H21C 109.0
Cd1i—O1—Cd1 106.37 (13) N21—C21—H21D 109.0
S3—O3—Cd2 122.13 (19) C22—C21—H21D 109.0
C11—N11—Cd1 116.2 (4) H21C—C21—H21D 107.8
C11—N11—H11A 108.2 C23—C22—C21 115.7 (6)
Cd1—N11—H11A 108.2 C23—C22—H22A 108.4
C11—N11—H11B 108.2 C21—C22—H22A 108.4
Cd1—N11—H11B 108.2 C23—C22—H22B 108.4
H11A—N11—H11B 107.4 C21—C22—H22B 108.4
C13—N12—C14 110.3 (5) H22A—C22—H22B 107.4
C13—N12—Cd1 113.1 (4) N22—C23—C22 113.7 (5)
C14—N12—Cd1 115.7 (4) N22—C23—H23C 108.8
C13—N12—H12 105.6 C22—C23—H23C 108.8
C14—N12—H12 105.6 N22—C23—H23D 108.8
Cd1—N12—H12 105.6 C22—C23—H23D 108.8
C16—N13—Cd1 115.9 (4) H23C—C23—H23D 107.7
C16—N13—H13A 108.3 N22—C24—C25 113.7 (5)
Cd1—N13—H13A 108.3 N22—C24—H24A 108.8
C16—N13—H13B 108.3 C25—C24—H24A 108.8
Cd1—N13—H13B 108.3 N22—C24—H24B 108.8
H13A—N13—H13B 107.4 C25—C24—H24B 108.8
N11—C11—C12 112.4 (5) H24A—C24—H24B 107.7
N11—C11—H11C 109.1 C24—C25—C26 116.3 (6)
C12—C11—H11C 109.1 C24—C25—H25A 108.2
N11—C11—H11D 109.1 C26—C25—H25A 108.2
C12—C11—H11D 109.1 C24—C25—H25B 108.2
H11C—C11—H11D 107.8 C26—C25—H25B 108.2
C13—C12—C11 115.7 (6) H25A—C25—H25B 107.4
C13—C12—H12A 108.4 N23—C26—C25 111.9 (6)
C11—C12—H12A 108.4 N23—C26—H26A 109.2
C13—C12—H12B 108.4 C25—C26—H26A 109.2
C11—C12—H12B 108.4 N23—C26—H26B 109.2
H12A—C12—H12B 107.4 C25—C26—H26B 109.2
N12—C13—C12 114.5 (5) H26A—C26—H26B 107.9
N12—C13—H13C 108.6 C31—O31—H31 109.5
C12—C13—H13C 108.6 O31—C31—H31A 109.5
N12—C13—H13D 108.6 O31—C31—H31B 109.5
C12—C13—H13D 108.6 H31A—C31—H31B 109.5
H13C—C13—H13D 107.6 O31—C31—H31C 109.5
N12—C14—C15 113.4 (5) H31A—C31—H31C 109.5
N12—C14—H14A 108.9 H31B—C31—H31C 109.5

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5596).

References

  1. Boeckmann, J. & Näther, C. (2010). Dalton. Trans. 39, 11019–11026. [DOI] [PubMed]
  2. Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106. [DOI] [PubMed]
  3. Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940–946.
  4. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  7. Wöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920–6923. [DOI] [PubMed]
  8. Wriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707–4709. [DOI] [PubMed]
  9. Wriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton. Trans. pp. 7975–7984. [DOI] [PubMed]
  10. Wriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896–6903. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031163/bt5596sup1.cif

e-67-m1201-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031163/bt5596Isup2.hkl

e-67-m1201-Isup2.hkl (280.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES