Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2369. doi: 10.1107/S1600536811030492

1-Phenyl-5-{[2-(trimethyl­sil­yl)eth­yl]sulfon­yl}-1H-tetra­zole

David Tymann a, Björn Nelson a, Carsten Strohmann a, Hans Preut a,*, Martin Hiersemann a
PMCID: PMC3200698  PMID: 22058975

Abstract

The title compound, C12H18N4O2SSi, was synthesized to be employed in a Julia–Kocieński olefination. In the mol­ecule, the dihedral angle between the phenyl ring and the tetra­zole ring is 41.50 (5)°. The significantly longer Si—C(methyl­ene) bond [1.8786 (13) Å] and the shortened adjacent C—C bond [1.5172 (18) Å], as well as the significant deviation of the corresponding Si—C—C angle [114.16 (9)°] from the ideal tetra­hedral angle, can be attributed to the β-effect of silicon. In the crystal, mol­ecules are held together by van der Waals inter­actions.

Related literature

For Julia–Kocieński olefination, see: Blakemore et al. (1998). For the use of unsaturated α-keto esters in intra­molecular carbonyl-ene reactions in natural product synthesis, see: Helmboldt & Hiersemann (2009); Helmboldt et al. (2006); Schnabel & Hiersemann (2009); Schnabel et al. (2011) The title compound was synthesized using a reduction of ethyl 2-(trimethyl­sil­yl)acetate (Gerlach, 1977) followed by a Mitsunobu reaction (Mitsunobu & Yamada, 1967; Mitsunobu et al., 1967) and a subsequent Mo-(VI)-catalyzed oxidation of the thio­ether (Schultz et al., 1963). graphic file with name e-67-o2369-scheme1.jpg

Experimental

Crystal data

  • C12H18N4O2SSi

  • M r = 310.45

  • Monoclinic, Inline graphic

  • a = 11.3126 (4) Å

  • b = 13.2707 (4) Å

  • c = 10.8277 (4) Å

  • β = 106.902 (4)°

  • V = 1555.31 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.50 × 0.50 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.868, T max = 0.944

  • 22841 measured reflections

  • 3384 independent reflections

  • 2961 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.079

  • S = 1.10

  • 3384 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030492/hg5066sup1.cif

e-67-o2369-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030492/hg5066Isup2.hkl

e-67-o2369-Isup2.hkl (166KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030492/hg5066Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

On the search for an alternative synthetic route for the preparation of unsaturated α-keto esters we envisioned the Julia–Kocieński olefination (Blakemore et al., 1998) as a key connecting step for the construction of the C=C-double bond. Unsaturated α-keto esters have been successfully employed in intramolecular carbonyl-ene reactions in natural product synthesis (Helmboldt et al., 2006; Helmboldt & Hiersemann, 2009; Schnabel & Hiersemann, 2009; Schnabel et al., 2011). For the preparation of the title compound I, 1-phenyl-5-((2-(trimethylsilyl)ethyl)thio)-1H-tetrazole was synthesized using a reduction of ethyl 2-(trimethylsilyl)acetate (Gerlach, 1977) followed by a Mitsunobu reaction (Mitsunobu & Yamada, 1967; Mitsunobu et al., 1967). A subsequent Mo-(VI)-catalyzed oxidation of the thioether II (Schultz et al., 1963) gave the title compound (I).

Experimental

To a solution of II (6.07 g, 21.8 mmol, 1.0 eq) in ethanol (220 ml, 10 ml/mmol II) was added a solution of (NH4)Mo7O24.2H2O (2.70 g, 0.22 mmol, 0.1 eq) in 35% aqueous H2O2 (18.75 ml, 0.22 mol, 10.0 eq). After stirring at room temperature for 22 h the reaction mixture was diluted with aqueous NH4Cl solution and methylene chloride. The layers were separated and the aqueous phase was extracted with methylene chloride (3x). The combined organic phases were washed with water (3x), dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure (323 K, 0.05 mbar) to afford I (6.72 g, 21.7 mmol, 99%) as crystals. Single crystals of I were obtained by recrystallization from n-pentane to give colorless cuboids: Rf 0.63 (cyclohexane/ethyl acetate 5/1); 1H NMR (CDCl3, 400 MHz, δ): 0.11 (s, 9H), 1.10–1.16 (m, 2H), 3.64–3.70 (m, 2H), 7.61–7.70 (m, 5H); 13C NMR (CDCl3, 101 MHz, δ): -1.8 (3xCH3), 8.4 (CH2), 53.3 (CH2), 125.3 (2xCH), 129.9 (2xCH), 131.7 (CH), 133.3 (C), 153.5 (C); IR (cm-1): 2955 (w) (νas,s C—H, CH3, CH2), 1496 (m) (ν C=C, Ar), 1426 (w), 1347 (s) (νR2SO2), 1251 (m), 1172 (m), 1152 (s), 1111 (w), 1014 (w), 834 (m); Anal. Calcd. for C12H18N4O2SSi: C, 46.4; H, 5.8; N, 18.1; Found: C, 46.4; H, 5.8; N, 17.9; M = 310.45 g/mol.

Refinement

All H atoms were placed at idealised positions and refined as riding [C-H = 0.95 Å (aromatic C), 0.99 Å (CH2 and 0.98 Å (CH3), Uiso(H) = 1.2 Ueq(C) (aromatic and CH2) and 1.5 Ueq(C) (CH3)].

Figures

Fig. 1.

Fig. 1.

: The molecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 30% probability level.

Crystal data

C12H18N4O2SSi F(000) = 656
Mr = 310.45 Dx = 1.326 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 16653 reflections
a = 11.3126 (4) Å θ = 2.4–29.2°
b = 13.2707 (4) Å µ = 0.29 mm1
c = 10.8277 (4) Å T = 173 K
β = 106.902 (4)° Block, colourless
V = 1555.31 (9) Å3 0.50 × 0.50 × 0.20 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur S CCD diffractometer 3384 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2961 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 16.0560 pixels mm-1 θmax = 27.0°, θmin = 2.4°
ω scans h = −14→14
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −16→16
Tmin = 0.868, Tmax = 0.944 l = −13→13
22841 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.3668P] where P = (Fo2 + 2Fc2)/3
3384 reflections (Δ/σ)max = 0.001
184 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.37 (release 24-10-2008) Empirical absorption correction using sperical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Si 0.47993 (3) 0.79710 (3) 1.25192 (3) 0.01949 (10)
C1 0.47042 (15) 0.87175 (12) 1.39384 (14) 0.0341 (3)
H1A 0.3933 0.8557 1.4135 0.051*
H1B 0.4722 0.9438 1.3744 0.051*
H1C 0.5408 0.8552 1.4684 0.051*
C2 0.61720 (14) 0.83876 (13) 1.20403 (15) 0.0346 (3)
H2A 0.6923 0.8247 1.2743 0.052*
H2B 0.6114 0.9113 1.1862 0.052*
H2C 0.6203 0.8022 1.1263 0.052*
C3 0.48654 (13) 0.66005 (11) 1.28620 (15) 0.0310 (3)
H3A 0.4895 0.6228 1.2090 0.046*
H3B 0.4130 0.6399 1.3105 0.046*
H3C 0.5607 0.6450 1.3573 0.046*
C4 0.33521 (12) 0.81809 (10) 1.11572 (13) 0.0255 (3)
H4A 0.3418 0.7802 1.0393 0.031*
H4B 0.2643 0.7903 1.1407 0.031*
C5 0.30914 (11) 0.92782 (10) 1.07831 (12) 0.0206 (3)
H5A 0.3797 0.9573 1.0541 0.025*
H5B 0.2977 0.9664 1.1523 0.025*
S 0.17351 (3) 0.93484 (2) 0.94605 (3) 0.01563 (9)
O1 0.19901 (9) 0.90232 (7) 0.83074 (9) 0.0253 (2)
O2 0.07296 (8) 0.89053 (7) 0.98167 (9) 0.0222 (2)
C6 0.14770 (11) 1.06672 (9) 0.93227 (12) 0.0162 (2)
N1 0.20780 (10) 1.12950 (8) 1.02188 (10) 0.0209 (2)
N2 0.16789 (11) 1.22251 (8) 0.97617 (11) 0.0253 (3)
N3 0.08670 (11) 1.21661 (8) 0.86430 (11) 0.0233 (2)
N4 0.07262 (9) 1.11767 (8) 0.83393 (10) 0.0172 (2)
C10 −0.01458 (11) 1.08607 (10) 0.71540 (12) 0.0187 (3)
C11 −0.02014 (13) 1.14131 (11) 0.60586 (13) 0.0254 (3)
H11 0.0318 1.1982 0.6096 0.030*
C12 −0.10312 (14) 1.11189 (12) 0.49061 (13) 0.0320 (3)
H12 −0.1085 1.1485 0.4138 0.038*
C13 −0.17799 (14) 1.02960 (12) 0.48703 (14) 0.0331 (3)
H13 −0.2349 1.0098 0.4075 0.040*
C14 −0.17131 (13) 0.97537 (11) 0.59818 (14) 0.0295 (3)
H14 −0.2235 0.9187 0.5945 0.035*
C15 −0.08875 (12) 1.00359 (10) 0.71465 (13) 0.0223 (3)
H15 −0.0834 0.9672 0.7916 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si 0.01680 (18) 0.01994 (18) 0.02019 (18) 0.00148 (13) 0.00294 (13) 0.00318 (13)
C1 0.0433 (9) 0.0335 (8) 0.0261 (7) 0.0030 (7) 0.0110 (6) 0.0011 (6)
C2 0.0267 (7) 0.0423 (9) 0.0372 (8) −0.0053 (7) 0.0130 (6) −0.0001 (7)
C3 0.0248 (7) 0.0253 (7) 0.0384 (8) 0.0043 (6) 0.0022 (6) 0.0080 (6)
C4 0.0224 (6) 0.0195 (6) 0.0288 (7) 0.0011 (5) −0.0019 (5) 0.0030 (5)
C5 0.0172 (6) 0.0206 (6) 0.0198 (6) 0.0009 (5) −0.0012 (5) 0.0015 (5)
S 0.01427 (15) 0.01592 (15) 0.01611 (15) 0.00142 (11) 0.00350 (11) 0.00039 (10)
O1 0.0287 (5) 0.0278 (5) 0.0199 (5) 0.0066 (4) 0.0081 (4) −0.0022 (4)
O2 0.0181 (4) 0.0204 (5) 0.0283 (5) −0.0012 (4) 0.0069 (4) 0.0039 (4)
C6 0.0142 (5) 0.0170 (6) 0.0184 (6) 0.0009 (4) 0.0064 (4) 0.0012 (4)
N1 0.0185 (5) 0.0195 (5) 0.0242 (5) −0.0010 (4) 0.0055 (4) −0.0021 (4)
N2 0.0255 (6) 0.0192 (6) 0.0300 (6) −0.0004 (4) 0.0064 (5) −0.0022 (5)
N3 0.0266 (6) 0.0157 (5) 0.0278 (6) −0.0007 (4) 0.0081 (5) −0.0010 (4)
N4 0.0188 (5) 0.0152 (5) 0.0182 (5) 0.0011 (4) 0.0064 (4) 0.0017 (4)
C10 0.0176 (6) 0.0202 (6) 0.0174 (6) 0.0052 (5) 0.0039 (5) −0.0006 (5)
C11 0.0289 (7) 0.0250 (7) 0.0233 (6) 0.0073 (6) 0.0092 (5) 0.0056 (5)
C12 0.0391 (8) 0.0355 (8) 0.0196 (7) 0.0160 (7) 0.0058 (6) 0.0050 (6)
C13 0.0326 (8) 0.0369 (8) 0.0223 (7) 0.0143 (7) −0.0040 (6) −0.0076 (6)
C14 0.0250 (7) 0.0250 (7) 0.0331 (8) 0.0032 (6) −0.0004 (6) −0.0061 (6)
C15 0.0218 (6) 0.0212 (6) 0.0224 (6) 0.0034 (5) 0.0039 (5) 0.0008 (5)

Geometric parameters (Å, °)

Si—C3 1.8534 (15) S—O2 1.4295 (9)
Si—C1 1.8575 (15) S—C6 1.7734 (13)
Si—C2 1.8586 (15) C6—N1 1.3093 (16)
Si—C4 1.8786 (13) C6—N4 1.3366 (15)
C1—H1A 0.9800 N1—N2 1.3573 (16)
C1—H1B 0.9800 N2—N3 1.2924 (16)
C1—H1C 0.9800 N3—N4 1.3517 (15)
C2—H2A 0.9800 N4—C10 1.4353 (15)
C2—H2B 0.9800 C10—C15 1.3778 (19)
C2—H2C 0.9800 C10—C11 1.3802 (18)
C3—H3A 0.9800 C11—C12 1.382 (2)
C3—H3B 0.9800 C11—H11 0.9500
C3—H3C 0.9800 C12—C13 1.376 (2)
C4—C5 1.5172 (18) C12—H12 0.9500
C4—H4A 0.9900 C13—C14 1.385 (2)
C4—H4B 0.9900 C13—H13 0.9500
C5—S 1.7710 (12) C14—C15 1.3850 (18)
C5—H5A 0.9900 C14—H14 0.9500
C5—H5B 0.9900 C15—H15 0.9500
S—O1 1.4275 (9)
C3—Si—C1 111.49 (7) H5A—C5—H5B 108.3
C3—Si—C2 111.06 (7) O1—S—O2 119.38 (6)
C1—Si—C2 109.04 (8) O1—S—C5 110.09 (6)
C3—Si—C4 106.14 (6) O2—S—C5 109.30 (6)
C1—Si—C4 108.88 (7) O1—S—C6 107.15 (6)
C2—Si—C4 110.18 (7) O2—S—C6 107.71 (6)
Si—C1—H1A 109.5 C5—S—C6 101.69 (6)
Si—C1—H1B 109.5 N1—C6—N4 109.95 (11)
H1A—C1—H1B 109.5 N1—C6—S 121.89 (9)
Si—C1—H1C 109.5 N4—C6—S 128.11 (9)
H1A—C1—H1C 109.5 C6—N1—N2 105.22 (10)
H1B—C1—H1C 109.5 N3—N2—N1 110.92 (10)
Si—C2—H2A 109.5 N2—N3—N4 106.75 (10)
Si—C2—H2B 109.5 C6—N4—N3 107.16 (10)
H2A—C2—H2B 109.5 C6—N4—C10 132.60 (11)
Si—C2—H2C 109.5 N3—N4—C10 120.20 (10)
H2A—C2—H2C 109.5 C15—C10—C11 122.78 (12)
H2B—C2—H2C 109.5 C15—C10—N4 119.77 (11)
Si—C3—H3A 109.5 C11—C10—N4 117.45 (12)
Si—C3—H3B 109.5 C10—C11—C12 118.37 (14)
H3A—C3—H3B 109.5 C10—C11—H11 120.8
Si—C3—H3C 109.5 C12—C11—H11 120.8
H3A—C3—H3C 109.5 C13—C12—C11 120.05 (13)
H3B—C3—H3C 109.5 C13—C12—H12 120.0
C5—C4—Si 114.16 (9) C11—C12—H12 120.0
C5—C4—H4A 108.7 C12—C13—C14 120.69 (13)
Si—C4—H4A 108.7 C12—C13—H13 119.7
C5—C4—H4B 108.7 C14—C13—H13 119.7
Si—C4—H4B 108.7 C15—C14—C13 120.17 (14)
H4A—C4—H4B 107.6 C15—C14—H14 119.9
C4—C5—S 108.77 (9) C13—C14—H14 119.9
C4—C5—H5A 109.9 C10—C15—C14 117.94 (13)
S—C5—H5A 109.9 C10—C15—H15 121.0
C4—C5—H5B 109.9 C14—C15—H15 121.0
S—C5—H5B 109.9
C3—Si—C4—C5 176.60 (11) S—C6—N4—N3 −177.75 (9)
C1—Si—C4—C5 56.46 (12) N1—C6—N4—C10 −177.91 (11)
C2—Si—C4—C5 −63.07 (13) S—C6—N4—C10 4.50 (19)
Si—C4—C5—S 178.07 (7) N2—N3—N4—C6 0.40 (14)
C4—C5—S—O1 −74.32 (11) N2—N3—N4—C10 178.48 (10)
C4—C5—S—O2 58.65 (11) C6—N4—C10—C15 40.14 (19)
C4—C5—S—C6 172.32 (9) N3—N4—C10—C15 −137.36 (12)
O1—S—C6—N1 −127.27 (10) C6—N4—C10—C11 −140.07 (13)
O2—S—C6—N1 103.12 (11) N3—N4—C10—C11 42.42 (16)
C5—S—C6—N1 −11.74 (12) C15—C10—C11—C12 −0.5 (2)
O1—S—C6—N4 50.06 (12) N4—C10—C11—C12 179.73 (12)
O2—S—C6—N4 −79.55 (12) C10—C11—C12—C13 0.3 (2)
C5—S—C6—N4 165.59 (11) C11—C12—C13—C14 0.0 (2)
N4—C6—N1—N2 −0.12 (13) C12—C13—C14—C15 0.0 (2)
S—C6—N1—N2 177.64 (9) C11—C10—C15—C14 0.5 (2)
C6—N1—N2—N3 0.38 (14) N4—C10—C15—C14 −179.75 (11)
N1—N2—N3—N4 −0.49 (14) C13—C14—C15—C10 −0.2 (2)
N1—C6—N4—N3 −0.17 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5066).

References

  1. Blakemore, P. R., Cole, W. J., Morley, A. & Kocieński, P. J. (1998). Synlett, pp. 26–28.
  2. Gerlach, H. (1977). Helv. Chim. Acta, 60, 3039–3044.
  3. Helmboldt, H. & Hiersemann, M. (2009). J. Org. Chem. 74, 1698–1708. [DOI] [PubMed]
  4. Helmboldt, H., Köhler, D. & Hiersemann, M. (2006). Org. Lett. 8, 1573–1576. [DOI] [PubMed]
  5. Mitsunobu, O. & Yamada, M. (1967). Bull. Chem. Soc. Jpn, 40, 2380–2382.
  6. Mitsunobu, O., Yamada, M. & Mukaiyama, T. (1967). Bull. Chem. Soc. Jpn, 40, 935–939.
  7. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Schnabel, C. & Hiersemann, M. (2009). Org. Lett. 11, 2555–2558. [DOI] [PubMed]
  9. Schnabel, C., Sterz, K., Müller, H., Rehbein, J., Wiese, M. & Hiersemann, M. (2011). J. Org. Chem. 76, 512–522. [DOI] [PubMed]
  10. Schultz, H. S., Freyermuth, H. B. & Buc, S. R. (1963). J. Org. Chem. 28, 1140–1142.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030492/hg5066sup1.cif

e-67-o2369-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030492/hg5066Isup2.hkl

e-67-o2369-Isup2.hkl (166KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030492/hg5066Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES