Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2320. doi: 10.1107/S1600536811032065

5-Chloro-1-phenyl-1H-pyrazol-4-amine

Artur Korzański a, Pawel Wagner b, Maciej Kubicki a,*
PMCID: PMC3200699  PMID: 22065135

Abstract

In the crystal structure of the title compound, C9H8ClN3, amino–pyrazole N—H⋯N hydrogen bonds connect the mol­ecules along the [010] direction; the chains interact with each other only by van der Waals-type inter­actions. The pyrazole and phenyl rings are inclined at a dihedral angle of 45.65 (6)°

Related literature

For the synthesis, see: Tallec et al. (2000). For other 4-amino­pyrazoles, see: Infantes et al. (1998, 1999); Schmidt et al. (2001). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-67-o2320-scheme1.jpg

Experimental

Crystal data

  • C9H8ClN3

  • M r = 193.63

  • Monoclinic, Inline graphic

  • a = 3.8926 (6) Å

  • b = 9.9679 (13) Å

  • c = 22.617 (2) Å

  • β = 92.795 (11)°

  • V = 876.52 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 295 K

  • 0.4 × 0.07 × 0.06 mm

Data collection

  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.853, T max = 1.000

  • 5036 measured reflections

  • 1879 independent reflections

  • 1340 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.091

  • S = 1.02

  • 1879 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032065/rk2288sup1.cif

e-67-o2320-sup1.cif (14.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032065/rk2288Isup2.hkl

e-67-o2320-Isup2.hkl (90.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032065/rk2288Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H41⋯N2i 0.85 (3) 2.31 (3) 3.144 (3) 169 (3)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

In the course of our studies on small heterocyclic ring derivatives we have determined the crystal structure of another member of 1–phenyl–4–amino–5–chloro–pyrazole, I, (Scheme 1). Some crystal structures of 4–aminopyrazoles were also reported, e.g. two polymorphic forms of 4–aminopyrazole (Infantes et al., 1998), 3,5–dimethyl–4–aminopyrazole (Infantes et al., 1999), and 4–amino–3,5–dinitropyrazole and it s dimethylsulfoxide solvate (Schmidt et al., 2001).

The Fig. 1 shows the perspective view of I. Two planar fragments, pyrazole (maximum deviation 0.0025 (12)Å) and phenyl (0.0082 (13)Å) rings are inclined by 45.65 (6)°. This is quite a typical value, for 241 compounds with similar structural fragment (5–substituted pyrazole, non–o–substituted phenyl) found in the Cambridge Structural Database (Allen, 2002; ver. 5.32 of Nov. 2010, last update May 2011) mean value of the twist angle is around 43°, and such is also the median value. The NH2–group is quite significantly twisted with respect to the pyrazole ring plane, the dihedral angle between two planes is 48 (2)°.

In the crystal structure the relatively weak N4—H41···N2i hydrogen bonds join 21 screw–related molecules into the C(5) chains along y–direction. Symmetry code: (i) -x, y-1/2, -z+1/2. There are no other specific interactions, so apparently the chains are organized into three–dimensional structure by van der Waals forces.

Experimental

The compound was synthesized by electrochemical reduction of 4–nitro–1–phenylpyrazole in diluted hydrochloric acid to corresponding hydroxylamine and its in situ nucleophilic transformation into 5–chloro derivative. The compound was separated from post–reaction mixture with low yield. (Tallec et al., 2000).

Refinement

Hydrogen atoms from NH2–group were found in the difference Fourier maps and freely refined with isotropic displacement parameters. All other hydrogen atoms were placed in idealized positions (C—H distance 0.93Å) and refined as a riding model with their Uiso = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound with the atom numbering scheme. The displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms are depicted as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing as seen along [1 0 0] direction; hydrogen bonds are shown as dashed lines.

Crystal data

C9H8ClN3 F(000) = 400
Mr = 193.63 Dx = 1.467 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1285 reflections
a = 3.8926 (6) Å θ = 2.0–27.8°
b = 9.9679 (13) Å µ = 0.39 mm1
c = 22.617 (2) Å T = 295 K
β = 92.795 (11)° Needle, colourless
V = 876.52 (19) Å3 0.4 × 0.07 × 0.06 mm
Z = 4

Data collection

Agilent Xcalibur Sapphire2 diffractometer 1879 independent reflections
Radiation source: Enhance (Mo) X–ray Source 1340 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 8.1929 pixels mm-1 θmax = 27.0°, θmin = 3.6°
ω scans h = −4→4
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −12→12
Tmin = 0.853, Tmax = 1.000 l = −28→28
5036 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.093P] where P = (Fo2 + 2Fc2)/3
1879 reflections (Δ/σ)max < 0.001
132 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2024 (4) 1.05610 (15) 0.15336 (6) 0.0333 (4)
C11 0.2744 (4) 1.17917 (18) 0.12513 (8) 0.0323 (4)
C12 0.1587 (5) 1.2018 (2) 0.06707 (8) 0.0398 (5)
H12 0.0415 1.1350 0.0457 0.043 (6)*
C13 0.2187 (5) 1.3236 (2) 0.04152 (9) 0.0476 (5)
H13 0.1442 1.3391 0.0024 0.070 (7)*
C14 0.3879 (5) 1.4228 (2) 0.07319 (10) 0.0497 (6)
H14 0.4254 1.5056 0.0558 0.060 (7)*
C15 0.5023 (5) 1.3995 (2) 0.13093 (9) 0.0457 (5)
H15 0.6165 1.4670 0.1524 0.046 (6)*
C16 0.4486 (5) 1.27721 (19) 0.15698 (8) 0.0377 (4)
H16 0.5292 1.2610 0.1957 0.039 (5)*
N2 0.0761 (4) 1.05812 (17) 0.20821 (6) 0.0400 (4)
C3 0.0204 (5) 0.9308 (2) 0.22098 (8) 0.0414 (5)
H3 −0.0687 0.9022 0.2563 0.057 (6)*
C4 0.1090 (5) 0.8444 (2) 0.17613 (8) 0.0400 (5)
N4 0.0706 (7) 0.7062 (2) 0.17291 (11) 0.0673 (7)
H42 0.231 (7) 0.668 (3) 0.1551 (14) 0.096 (12)*
H41 0.059 (7) 0.670 (3) 0.2067 (13) 0.090 (10)*
C5 0.2237 (5) 0.92795 (19) 0.13352 (7) 0.0343 (4)
Cl5 0.39097 (13) 0.88538 (6) 0.06812 (2) 0.04946 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0408 (8) 0.0330 (9) 0.0265 (7) 0.0010 (7) 0.0052 (7) −0.0009 (7)
C11 0.0326 (9) 0.0331 (10) 0.0316 (9) 0.0015 (8) 0.0051 (8) 0.0015 (8)
C12 0.0402 (10) 0.0455 (12) 0.0339 (10) 0.0005 (10) 0.0034 (8) 0.0001 (9)
C13 0.0519 (12) 0.0535 (14) 0.0378 (11) 0.0064 (11) 0.0082 (10) 0.0132 (10)
C14 0.0514 (12) 0.0404 (13) 0.0588 (14) 0.0034 (10) 0.0186 (11) 0.0133 (11)
C15 0.0459 (11) 0.0366 (12) 0.0552 (13) −0.0017 (10) 0.0071 (10) −0.0038 (10)
C16 0.0392 (10) 0.0368 (11) 0.0370 (10) 0.0032 (9) 0.0016 (8) −0.0018 (9)
N2 0.0506 (9) 0.0423 (10) 0.0278 (8) 0.0028 (8) 0.0086 (7) 0.0006 (7)
C3 0.0526 (12) 0.0422 (12) 0.0300 (9) 0.0003 (10) 0.0078 (9) 0.0072 (9)
C4 0.0479 (11) 0.0361 (11) 0.0356 (10) 0.0021 (9) −0.0021 (9) 0.0025 (9)
N4 0.113 (2) 0.0338 (11) 0.0560 (14) −0.0017 (12) 0.0120 (14) 0.0028 (10)
C5 0.0367 (10) 0.0377 (11) 0.0283 (9) 0.0018 (8) 0.0007 (8) −0.0021 (8)
Cl5 0.0591 (3) 0.0560 (4) 0.0338 (3) 0.0070 (3) 0.0076 (2) −0.0094 (2)

Geometric parameters (Å, °)

N1—N2 1.3566 (19) C15—C16 1.375 (3)
N1—C5 1.358 (2) C15—H15 0.9300
N1—C11 1.417 (2) C16—H16 0.9300
C11—C16 1.373 (2) N2—C3 1.322 (2)
C11—C12 1.386 (2) C3—C4 1.387 (3)
C12—C13 1.369 (3) C3—H3 0.9300
C12—H12 0.9300 C4—C5 1.365 (3)
C13—C14 1.371 (3) C4—N4 1.387 (3)
C13—H13 0.9300 N4—H42 0.85 (3)
C14—C15 1.379 (3) N4—H41 0.85 (3)
C14—H14 0.9300 C5—Cl5 1.6988 (18)
N2—N1—C5 110.30 (15) C14—C15—H15 119.8
N2—N1—C11 119.19 (15) C11—C16—C15 119.21 (18)
C5—N1—C11 130.45 (15) C11—C16—H16 120.4
C16—C11—C12 120.69 (17) C15—C16—H16 120.4
C16—C11—N1 118.89 (15) C3—N2—N1 104.85 (15)
C12—C11—N1 120.37 (17) N2—C3—C4 112.76 (17)
C13—C12—C11 119.35 (19) N2—C3—H3 123.6
C13—C12—H12 120.3 C4—C3—H3 123.6
C11—C12—H12 120.3 C5—C4—C3 103.84 (18)
C12—C13—C14 120.42 (19) C5—C4—N4 127.4 (2)
C12—C13—H13 119.8 C3—C4—N4 128.7 (2)
C14—C13—H13 119.8 C4—N4—H42 113 (2)
C13—C14—C15 119.9 (2) C4—N4—H41 113 (2)
C13—C14—H14 120.0 H42—N4—H41 108 (3)
C15—C14—H14 120.0 N1—C5—C4 108.25 (16)
C16—C15—C14 120.4 (2) N1—C5—Cl5 123.71 (14)
C16—C15—H15 119.8 C4—C5—Cl5 127.94 (16)
N2—N1—C11—C16 45.7 (2) C11—N1—N2—C3 176.97 (15)
C5—N1—C11—C16 −137.71 (19) N1—N2—C3—C4 0.4 (2)
N2—N1—C11—C12 −131.79 (18) N2—C3—C4—C5 −0.4 (2)
C5—N1—C11—C12 44.8 (3) N2—C3—C4—N4 −176.6 (2)
C16—C11—C12—C13 −0.2 (3) N2—N1—C5—C4 0.1 (2)
N1—C11—C12—C13 177.24 (16) C11—N1—C5—C4 −176.81 (17)
C11—C12—C13—C14 −0.8 (3) N2—N1—C5—Cl5 −176.49 (12)
C12—C13—C14—C15 0.8 (3) C11—N1—C5—Cl5 6.7 (3)
C13—C14—C15—C16 0.2 (3) C3—C4—C5—N1 0.2 (2)
C12—C11—C16—C15 1.1 (3) N4—C4—C5—N1 176.4 (2)
N1—C11—C16—C15 −176.34 (17) C3—C4—C5—Cl5 176.55 (14)
C14—C15—C16—C11 −1.1 (3) N4—C4—C5—Cl5 −7.2 (3)
C5—N1—N2—C3 −0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H41···N2i 0.85 (3) 2.31 (3) 3.144 (3) 169 (3)

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2288).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  4. Infantes, L., Foces–Foces, C., Cabildo, P., Claramunt, R. M., Mo, O., Yanez, M. & Elguero, J. (1998). Heterocycles, 49, 157–168.
  5. Infantes, L., Foces–Foces, C., Claramunt, R. M., Lopez, C. & Elguero, J. (1999). J. Heterocycl. Chem. 36, 595–600.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Schmidt, R. D., Lee, G. S., Pagoria, P. F., Mitchell, A. R. & Gilardi, R. (2001). J. Heterocycl. Chem. 38, 1227–1230.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tallec, A., Hazard, R., Suwinski, J. & Wagner, P. (2000). Pol. J. Chem 74, 1177–1183.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032065/rk2288sup1.cif

e-67-o2320-sup1.cif (14.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032065/rk2288Isup2.hkl

e-67-o2320-Isup2.hkl (90.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032065/rk2288Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES