Abstract
In the title compound, C6H12N2O2S, the heterocyclic ring has a sofa conformation. The molecular conformation is stabilized by an intramolecular O—H⋯O hydrogen-bond interaction with graph-set motif S(6). In the crystal, molecules are linked by O—H⋯S, N—H⋯S and N—H⋯O hydrogen-bond interactions, forming an extended two-dimensional framework parallel to the ac plane.
Related literature
For the preparation of pyrimidines by reactions of 1,3-dicarbonyl compounds (e.g. ethyl acetoacetate, acetylacetone) with urea, thiourea, guanidine, see: Barton & Ollis (1979 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶). For ring conformations, see: Cremer & Pople (1975 ▶).
Experimental
Crystal data
C6H12N2O2S
M r = 176.24
Triclinic,
a = 5.2425 (4) Å
b = 8.7047 (6) Å
c = 9.4370 (7) Å
α = 74.812 (1)°
β = 88.670 (1)°
γ = 79.708 (1)°
V = 408.80 (5) Å3
Z = 2
Mo Kα radiation
μ = 0.35 mm−1
T = 296 K
0.30 × 0.20 × 0.20 mm
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003 ▶) T min = 0.903, T max = 0.934
4260 measured reflections
1760 independent reflections
1557 reflections with I > 2σ(I)
R int = 0.012
Refinement
R[F 2 > 2σ(F 2)] = 0.029
wR(F 2) = 0.080
S = 1.00
1760 reflections
102 parameters
H-atom parameters constrained
Δρmax = 0.36 e Å−3
Δρmin = −0.17 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT-Plus (Bruker, 2001 ▶); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: OLEX2 (Dolomanov et al., 2009 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103145X/bt5602sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103145X/bt5602Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681103145X/bt5602Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1O⋯O2 | 0.88 | 1.98 | 2.727 (2) | 143 |
| O2—H2O⋯S1i | 0.88 | 2.37 | 3.249 (1) | 173 |
| N1—H1N⋯S1ii | 0.92 | 2.60 | 3.414 (1) | 149 |
| N2—H2N⋯O1iii | 0.92 | 2.18 | 3.074 (2) | 164 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
The authors are grateful to Baku State University for supporting this study. IB thanks the Spanish Research Council (CSIC) for the provision of a free-of-charge licence to the Cambridge Structural Database.
supplementary crystallographic information
Comment
The biological activity of pyrimidine derivatives attracts great interest to their synthesis. Their derivatives play important part in the functions of the human body. Pyrimidine structural fragment is included into quite a number of natural substances (nucleic acids, vitamin B1), into synthetic medicinals (barbiturates), into chemotherapeutic preparations (fluorouracil). In preparation of pyrimidines are widely used reactions of 1,3-dicarbonyl compounds (e.g. ethyl acetoacetate, acetylacetone) with urea, thiourea, guanidine etc (Barton & Ollis, 1979). In the title compound (I), C6H12N2O2S, the heterocyclo ring has a sofa conformation, (QT= 0.459 (13) Å, θ= 127.52 (7)°, φ2 = 59.54 (4)°, (Cremer & Pople, 1975). The molecular conformation is stabilized by one intramolecular O—H···O hydrogen-bond interaction with set graph motif S(6) (Bernstein, et al. 1995). In the crystal the molecules are linked by O—H···S, N—H···S, N—H···O hydrogen-bond interactions forming an extended two-dimensional framework parallel to ab plane, Table 1, Fig. 2.
Experimental
On the anhydrous ethanol (40 ml) added 18 gram (0.783 mol) small pieces of metallic sodium and wasvigorously stirred until sodium fully reacted with ethanol. Then on theobtained solution was added 10 gram (0.1 mol) of acetylacetone and 7.4 gram (0.1 mol) ofthiourea. Reaction mixture was stirred two hour in room temperature. Then 120 ml distilled water added on reaction mixture and neutralized with 5 ml ofglacial acetic acid. Precipitated unreacted part of thiourea was filtered ofand the obtained filtrate stayed in -10 °C. After two days obtained single crystals of 4,6-dihydroxy-4,6-dimethyltetrahydropyrimidine-2(1h)-thione was collected. Yield 6 gram (42%), m.p. 254–255 °C.
1H NMR(300 MHz, DMSO-d6) δ 1.32 (s, 6H, 2CH3), 1.71–2.05 (m, 2H,CH2), 3.52 (s, 2H, 2OH), 6.16 (s, 1H, NH), 8.67 (s, 1H, NH). 13CNMR (75 MHz, DMSO-d6) δ 28.40,43.63, 78.98, 79.07, 175.23, 175.31
Refinement
All H-atoms were placed in calculated positions [C—H = 0.96 to 0.97 Å, Uiso(H) =1.2 to 1.5 Ueq(C), O—H = 0.88 Å, Uiso(H) =1.5 Ueq(O) and N—H = 0.92 Å, Uiso(H)=1.2 Ueq(N)] and were included in the refinement in the riding model approximation.
Figures
Fig. 1.
The structure of (I) showing the atom numbering scheme. The hydrogen bond is showing as dotted line. Displacement ellipsoids are drawn at 30% probability level.
Fig. 2.
Part of the crystal structure showing O—H···S; N—H···S & N—H···O hydrogen-bond interactions parallel to ab plane. The methyl groups and the H atoms on C3 atom have been omitted for clarity.
Crystal data
| C6H12N2O2S | Z = 2 |
| Mr = 176.24 | F(000) = 188 |
| Triclinic, P1 | Dx = 1.432 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 5.2425 (4) Å | Cell parameters from 2799 reflections |
| b = 8.7047 (6) Å | θ = 2.2–28.4° |
| c = 9.4370 (7) Å | µ = 0.35 mm−1 |
| α = 74.812 (1)° | T = 296 K |
| β = 88.670 (1)° | Needle, colourless |
| γ = 79.708 (1)° | 0.30 × 0.20 × 0.20 mm |
| V = 408.80 (5) Å3 |
Data collection
| Bruker APEXII CCD diffractometer | 1760 independent reflections |
| Radiation source: fine-focus sealed tube | 1557 reflections with I > 2σ(I) |
| graphite | Rint = 0.012 |
| φ and ω scans | θmax = 27.0°, θmin = 2.2° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −6→6 |
| Tmin = 0.903, Tmax = 0.934 | k = −11→11 |
| 4260 measured reflections | l = −12→12 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: difference Fourier map |
| wR(F2) = 0.080 | H-atom parameters constrained |
| S = 1.00 | w = 1/[σ2(Fo2) + (0.0543P)2 + 0.0583P] where P = (Fo2 + 2Fc2)/3 |
| 1760 reflections | (Δ/σ)max = 0.001 |
| 102 parameters | Δρmax = 0.36 e Å−3 |
| 0 restraints | Δρmin = −0.17 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | −0.13693 (17) | 0.81379 (12) | 0.96252 (10) | 0.0356 (2) | |
| H1O | −0.2022 | 0.8234 | 0.8749 | 0.053* | |
| O2 | −0.14367 (17) | 0.74017 (12) | 0.69909 (10) | 0.0366 (2) | |
| H2O | −0.1954 | 0.7791 | 0.6065 | 0.055* | |
| N1 | 0.2210 (2) | 0.86785 (12) | 0.64127 (11) | 0.0280 (2) | |
| H1N | 0.2746 | 0.8901 | 0.5457 | 0.034* | |
| N2 | 0.2262 (2) | 0.92771 (12) | 0.86480 (11) | 0.0279 (2) | |
| H2N | 0.2349 | 1.0033 | 0.9160 | 0.033* | |
| S1 | 0.35950 (7) | 1.14664 (4) | 0.63906 (3) | 0.03452 (13) | |
| C1 | 0.2615 (2) | 0.96882 (14) | 0.72002 (13) | 0.0244 (2) | |
| C2 | 0.1320 (2) | 0.71395 (14) | 0.70201 (13) | 0.0273 (3) | |
| C3 | 0.2177 (2) | 0.65313 (14) | 0.86236 (13) | 0.0285 (3) | |
| H3A | 0.4050 | 0.6213 | 0.8688 | 0.034* | |
| H3B | 0.1433 | 0.5581 | 0.9075 | 0.034* | |
| C4 | 0.1366 (2) | 0.78007 (15) | 0.94675 (13) | 0.0269 (3) | |
| C5 | 0.2428 (3) | 0.59777 (17) | 0.61166 (16) | 0.0391 (3) | |
| H5A | 0.1869 | 0.6437 | 0.5109 | 0.059* | |
| H5B | 0.1827 | 0.4971 | 0.6486 | 0.059* | |
| H5C | 0.4287 | 0.5790 | 0.6183 | 0.059* | |
| C6 | 0.2540 (3) | 0.72820 (18) | 1.10103 (14) | 0.0365 (3) | |
| H6A | 0.1999 | 0.8124 | 1.1494 | 0.055* | |
| H6B | 0.4397 | 0.7081 | 1.0962 | 0.055* | |
| H6C | 0.1966 | 0.6312 | 1.1551 | 0.055* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0260 (4) | 0.0510 (6) | 0.0316 (5) | −0.0065 (4) | 0.0043 (4) | −0.0147 (4) |
| O2 | 0.0294 (5) | 0.0502 (6) | 0.0331 (5) | −0.0117 (4) | −0.0005 (4) | −0.0128 (4) |
| N1 | 0.0366 (5) | 0.0270 (5) | 0.0231 (5) | −0.0107 (4) | 0.0039 (4) | −0.0081 (4) |
| N2 | 0.0347 (5) | 0.0276 (5) | 0.0236 (5) | −0.0084 (4) | 0.0025 (4) | −0.0091 (4) |
| S1 | 0.0502 (2) | 0.02887 (19) | 0.02849 (18) | −0.01687 (14) | 0.00523 (14) | −0.00838 (13) |
| C1 | 0.0229 (5) | 0.0250 (6) | 0.0256 (6) | −0.0036 (4) | 0.0006 (4) | −0.0076 (4) |
| C2 | 0.0294 (6) | 0.0256 (6) | 0.0296 (6) | −0.0077 (5) | 0.0026 (5) | −0.0104 (5) |
| C3 | 0.0303 (6) | 0.0249 (6) | 0.0293 (6) | −0.0059 (5) | 0.0021 (5) | −0.0048 (5) |
| C4 | 0.0252 (6) | 0.0309 (6) | 0.0242 (6) | −0.0048 (4) | 0.0018 (4) | −0.0067 (5) |
| C5 | 0.0509 (8) | 0.0324 (7) | 0.0400 (7) | −0.0099 (6) | 0.0072 (6) | −0.0188 (6) |
| C6 | 0.0388 (7) | 0.0420 (7) | 0.0256 (6) | −0.0044 (6) | −0.0037 (5) | −0.0050 (5) |
Geometric parameters (Å, °)
| O1—C4 | 1.4237 (14) | C2—C5 | 1.5185 (17) |
| O1—H1O | 0.8800 | C3—C4 | 1.5211 (17) |
| O2—C2 | 1.4223 (15) | C3—H3A | 0.9700 |
| O2—H2O | 0.8800 | C3—H3B | 0.9700 |
| N1—C1 | 1.3365 (15) | C4—C6 | 1.5166 (17) |
| N1—C2 | 1.4660 (15) | C5—H5A | 0.9600 |
| N1—H1N | 0.9200 | C5—H5B | 0.9600 |
| N2—C1 | 1.3359 (15) | C5—H5C | 0.9600 |
| N2—C4 | 1.4658 (15) | C6—H6A | 0.9600 |
| N2—H2N | 0.9199 | C6—H6B | 0.9600 |
| S1—C1 | 1.7001 (12) | C6—H6C | 0.9600 |
| C2—C3 | 1.5161 (17) | ||
| C4—O1—H1O | 104.7 | C4—C3—H3B | 109.1 |
| C2—O2—H2O | 107.2 | H3A—C3—H3B | 107.9 |
| C1—N1—C2 | 124.46 (10) | O1—C4—N2 | 109.54 (10) |
| C1—N1—H1N | 117.0 | O1—C4—C6 | 106.20 (10) |
| C2—N1—H1N | 118.0 | N2—C4—C6 | 109.09 (10) |
| C1—N2—C4 | 125.07 (10) | O1—C4—C3 | 112.36 (10) |
| C1—N2—H2N | 118.2 | N2—C4—C3 | 107.21 (9) |
| C4—N2—H2N | 116.1 | C6—C4—C3 | 112.39 (10) |
| N2—C1—N1 | 119.07 (11) | C2—C5—H5A | 109.5 |
| N2—C1—S1 | 119.89 (9) | C2—C5—H5B | 109.5 |
| N1—C1—S1 | 121.04 (9) | H5A—C5—H5B | 109.5 |
| O2—C2—N1 | 109.74 (10) | C2—C5—H5C | 109.5 |
| O2—C2—C3 | 106.53 (10) | H5A—C5—H5C | 109.5 |
| N1—C2—C3 | 107.89 (9) | H5B—C5—H5C | 109.5 |
| O2—C2—C5 | 111.08 (10) | C4—C6—H6A | 109.5 |
| N1—C2—C5 | 108.47 (10) | C4—C6—H6B | 109.5 |
| C3—C2—C5 | 113.05 (11) | H6A—C6—H6B | 109.5 |
| C2—C3—C4 | 112.40 (10) | C4—C6—H6C | 109.5 |
| C2—C3—H3A | 109.1 | H6A—C6—H6C | 109.5 |
| C4—C3—H3A | 109.1 | H6B—C6—H6C | 109.5 |
| C2—C3—H3B | 109.1 | ||
| C4—N2—C1—N1 | −2.11 (17) | N1—C2—C3—C4 | 52.12 (13) |
| C4—N2—C1—S1 | 178.50 (8) | C5—C2—C3—C4 | 172.06 (10) |
| C2—N1—C1—N2 | 1.77 (18) | C1—N2—C4—O1 | −94.88 (13) |
| C2—N1—C1—S1 | −178.85 (9) | C1—N2—C4—C6 | 149.26 (11) |
| C1—N1—C2—O2 | 88.79 (13) | C1—N2—C4—C3 | 27.30 (15) |
| C1—N1—C2—C3 | −26.90 (16) | C2—C3—C4—O1 | 68.34 (13) |
| C1—N1—C2—C5 | −149.69 (12) | C2—C3—C4—N2 | −52.07 (12) |
| O2—C2—C3—C4 | −65.66 (12) | C2—C3—C4—C6 | −171.94 (10) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1O···O2 | 0.88 | 1.98 | 2.727 (2) | 143 |
| O2—H2O···S1i | 0.88 | 2.37 | 3.249 (1) | 173 |
| N1—H1N···S1ii | 0.92 | 2.60 | 3.414 (1) | 149 |
| N2—H2N···O1iii | 0.92 | 2.18 | 3.074 (2) | 164 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+2, −z+2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5602).
References
- Barton, D. & Ollis, W. D. (1979). Editors. Comprehensive Organic Chemistry Oxford: Pergamon Press. Translated under the title Obshchayaorganicheskaya khimiya, 1961, Vol. 6. Khimiya: Moscow.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103145X/bt5602sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103145X/bt5602Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681103145X/bt5602Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


