Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2517. doi: 10.1107/S1600536811034301

7-Benzyl-2,7-diaza­spiro­[4.4]nonan-1-one

Huan-Mei Guo a,*
PMCID: PMC3200701  PMID: 22059056

Abstract

In the title compound, C14H18N2O, both the spiro-linked five-membered rings adopt envelope conformations, with a C atom as the flap in one ring and an N atom in the other. The dihedral angle between the two four-atom planes is 80.46 (8)°. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonds to generate C(4) chains propagating in [010].

Related literature

For background to pyrrolidine derivatives, see: Kuroki et al. (1999); Hale et al. (2001); Shen et al. (2004).graphic file with name e-67-o2517-scheme1.jpg

Experimental

Crystal data

  • C14H18N2O

  • M r = 230.30

  • Orthorhombic, Inline graphic

  • a = 9.630 (2) Å

  • b = 8.4322 (18) Å

  • c = 29.848 (7) Å

  • V = 2423.8 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.21 × 0.18 × 0.17 mm

Data collection

  • MM007-HF CCD (Saturn 724+) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.983, T max = 0.986

  • 9156 measured reflections

  • 2761 independent reflections

  • 2495 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.120

  • S = 1.16

  • 2761 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034301/hb6338sup1.cif

e-67-o2517-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034301/hb6338Isup2.hkl

e-67-o2517-Isup2.hkl (135.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034301/hb6338Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 2.14 2.9839 (19) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The author thanks Shandong Provincial Natural Science Foundation, China (grant No. Y2008B29) and Yuandu Scholar of Weifang City for support.

supplementary crystallographic information

Comment

While a great number of pyrrolidines and their derivatives with specific substitution pattern are of particular interest, new methods for their preparation are needed; e.g. Kuroki et al., (1999); Hale et al., (2001); Shen et al., (2004). As part of our research work in this area, the title compound, (I), was synthesized, and herein we report the structure of it.

In the molecule (Fig. 1), all bond lengths and angles are within normal ranges. Atoms C8, C9, C10, and C11 lie in a plane (p1),with a maximum deviation of 0.01102 (11)Å for C10; atoms C10, C13, C14, and N3 lie in a plane (p2) too, the maximum deviation is 0.0045 (10)Å for N3. The dihedral angle between the two plans is 80.46 (8)°. The dihedral angles made by the phenyl ring with p1anes p1 and p2 are 53.56 (9)° and 50.21 (6)°, respectively. The structure exhibits intermolecular N3—H···O1 hydrogen bonding interactions (Table 1), which link the molecules into chains.

Experimental

The title molecule, C14H18N2O1, was synthesized from methyl 1-benzyl-3-(cyanomethyl) pyrrolidine-3-carboxylate and Raney Ni (w/w = 4: 1) in methanol under H2 (50 Psi) atmosphere at room temperature. Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their attached atoms, the C—H distances is in the range 0.95–0.98 Å, and with Uiso(H) = 1.2Ueq(C); the N—H distances is 0.88 Å, with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Crystal data

C14H18N2O F(000) = 992
Mr = 230.30 Dx = 1.262 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 6994 reflections
a = 9.630 (2) Å θ = 1.4–27.5°
b = 8.4322 (18) Å µ = 0.08 mm1
c = 29.848 (7) Å T = 173 K
V = 2423.8 (9) Å3 Block, colorless
Z = 8 0.21 × 0.18 × 0.17 mm

Data collection

MM007-HF CCD (Saturn 724+) diffractometer 2761 independent reflections
Radiation source: rotating anode 2495 reflections with I > 2σ(I)
Confocal Rint = 0.046
ω scans at fixed χ = 45° θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) h = −7→12
Tmin = 0.983, Tmax = 0.986 k = −7→10
9156 measured reflections l = −38→38

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.030P)2 + 1.3429P] where P = (Fo2 + 2Fc2)/3
2761 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.27133 (12) 0.12904 (14) 0.47500 (4) 0.0295 (3)
N1 0.48470 (14) 0.35120 (16) 0.37041 (4) 0.0226 (3)
N3 0.39956 (15) −0.08606 (16) 0.45320 (5) 0.0265 (3)
H3 0.3485 −0.1589 0.4664 0.032*
C1 0.39718 (18) 0.6967 (2) 0.29710 (6) 0.0279 (4)
H1 0.3010 0.6777 0.2924 0.033*
C2 0.4556 (2) 0.8372 (2) 0.28234 (6) 0.0324 (4)
H2 0.3996 0.9135 0.2675 0.039*
C3 0.5953 (2) 0.8667 (2) 0.28919 (6) 0.0319 (4)
H3A 0.6352 0.9636 0.2793 0.038*
C4 0.67658 (19) 0.7545 (2) 0.31053 (6) 0.0305 (4)
H4 0.7726 0.7741 0.3153 0.037*
C5 0.61789 (17) 0.61353 (19) 0.32491 (6) 0.0255 (4)
H5 0.6746 0.5365 0.3392 0.031*
C6 0.47727 (17) 0.58284 (19) 0.31871 (5) 0.0228 (3)
C7 0.41177 (18) 0.4289 (2) 0.33361 (6) 0.0259 (4)
H7B 0.3149 0.4501 0.3430 0.031*
H7A 0.4085 0.3554 0.3078 0.031*
C8 0.48226 (19) 0.4420 (2) 0.41228 (5) 0.0266 (4)
H8A 0.3889 0.4870 0.4178 0.032*
H8B 0.5508 0.5294 0.4115 0.032*
C9 0.5201 (2) 0.3210 (2) 0.44804 (6) 0.0315 (4)
H9A 0.4680 0.3417 0.4760 0.038*
H9B 0.6207 0.3248 0.4547 0.038*
C10 0.47966 (17) 0.15873 (19) 0.42824 (5) 0.0237 (4)
C11 0.41627 (19) 0.2024 (2) 0.38238 (5) 0.0264 (4)
H11B 0.4358 0.1191 0.3599 0.032*
H11A 0.3145 0.2169 0.3848 0.032*
C12 0.59701 (18) 0.0370 (2) 0.42444 (6) 0.0310 (4)
H12A 0.6471 0.0487 0.3957 0.037*
H12B 0.6640 0.0489 0.4494 0.037*
C13 0.52313 (19) −0.1232 (2) 0.42691 (6) 0.0317 (4)
H13A 0.4981 −0.1622 0.3967 0.038*
H13B 0.5814 −0.2036 0.4421 0.038*
C14 0.37117 (16) 0.06900 (19) 0.45541 (5) 0.0220 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0269 (6) 0.0299 (7) 0.0317 (6) 0.0042 (5) 0.0045 (5) 0.0012 (5)
N1 0.0255 (7) 0.0193 (7) 0.0231 (7) −0.0027 (6) −0.0004 (5) 0.0010 (5)
N3 0.0277 (7) 0.0197 (7) 0.0321 (8) −0.0019 (6) 0.0035 (6) 0.0033 (6)
C1 0.0259 (8) 0.0299 (9) 0.0279 (8) 0.0013 (8) −0.0008 (7) 0.0021 (7)
C2 0.0361 (10) 0.0283 (9) 0.0329 (9) 0.0047 (8) −0.0023 (8) 0.0071 (7)
C3 0.0383 (10) 0.0255 (9) 0.0320 (9) −0.0055 (8) 0.0031 (8) 0.0054 (7)
C4 0.0273 (9) 0.0283 (9) 0.0358 (9) −0.0047 (7) 0.0024 (7) −0.0001 (7)
C5 0.0246 (8) 0.0232 (8) 0.0289 (9) 0.0013 (7) 0.0008 (7) 0.0015 (7)
C6 0.0245 (8) 0.0214 (8) 0.0226 (8) −0.0004 (7) 0.0007 (6) −0.0006 (6)
C7 0.0244 (8) 0.0258 (9) 0.0276 (8) −0.0035 (7) −0.0021 (6) 0.0036 (7)
C8 0.0308 (9) 0.0227 (8) 0.0263 (8) −0.0014 (7) 0.0028 (7) −0.0020 (7)
C9 0.0399 (10) 0.0272 (9) 0.0273 (9) −0.0090 (8) −0.0052 (7) 0.0006 (7)
C10 0.0265 (8) 0.0209 (8) 0.0237 (8) −0.0025 (7) −0.0016 (6) 0.0012 (6)
C11 0.0307 (9) 0.0240 (8) 0.0245 (8) −0.0058 (7) −0.0035 (7) 0.0032 (7)
C12 0.0264 (9) 0.0344 (10) 0.0324 (9) 0.0023 (8) 0.0053 (7) 0.0032 (8)
C13 0.0352 (10) 0.0260 (9) 0.0341 (9) 0.0066 (8) 0.0034 (8) −0.0010 (7)
C14 0.0218 (8) 0.0228 (8) 0.0214 (7) −0.0004 (7) −0.0019 (6) 0.0010 (6)

Geometric parameters (Å, °)

O1—C14 1.2341 (19) C7—H7B 0.9900
N1—C7 1.459 (2) C7—H7A 0.9900
N1—C11 1.462 (2) C8—C9 1.521 (2)
N1—C8 1.466 (2) C8—H8A 0.9900
N3—C14 1.337 (2) C8—H8B 0.9900
N3—C13 1.460 (2) C9—C10 1.540 (2)
N3—H3 0.8800 C9—H9A 0.9900
C1—C2 1.383 (2) C9—H9B 0.9900
C1—C6 1.390 (2) C10—C14 1.524 (2)
C1—H1 0.9500 C10—C12 1.531 (2)
C2—C3 1.384 (3) C10—C11 1.544 (2)
C2—H2 0.9500 C11—H11B 0.9900
C3—C4 1.384 (3) C11—H11A 0.9900
C3—H3A 0.9500 C12—C13 1.529 (2)
C4—C5 1.384 (2) C12—H12A 0.9900
C4—H4 0.9500 C12—H12B 0.9900
C5—C6 1.391 (2) C13—H13A 0.9900
C5—H5 0.9500 C13—H13B 0.9900
C6—C7 1.510 (2)
C7—N1—C11 110.62 (13) H8A—C8—H8B 108.9
C7—N1—C8 113.55 (13) C8—C9—C10 105.45 (14)
C11—N1—C8 103.47 (13) C8—C9—H9A 110.7
C14—N3—C13 113.77 (14) C10—C9—H9A 110.7
C14—N3—H3 123.1 C8—C9—H9B 110.7
C13—N3—H3 123.1 C10—C9—H9B 110.7
C2—C1—C6 120.90 (16) H9A—C9—H9B 108.8
C2—C1—H1 119.5 C14—C10—C12 102.28 (13)
C6—C1—H1 119.5 C14—C10—C9 114.22 (14)
C1—C2—C3 120.16 (17) C12—C10—C9 115.95 (14)
C1—C2—H2 119.9 C14—C10—C11 108.61 (13)
C3—C2—H2 119.9 C12—C10—C11 112.71 (14)
C4—C3—C2 119.67 (17) C9—C10—C11 103.19 (13)
C4—C3—H3A 120.2 N1—C11—C10 104.07 (13)
C2—C3—H3A 120.2 N1—C11—H11B 110.9
C3—C4—C5 119.94 (17) C10—C11—H11B 110.9
C3—C4—H4 120.0 N1—C11—H11A 110.9
C5—C4—H4 120.0 C10—C11—H11A 110.9
C4—C5—C6 121.06 (16) H11B—C11—H11A 109.0
C4—C5—H5 119.5 C13—C12—C10 104.21 (14)
C6—C5—H5 119.5 C13—C12—H12A 110.9
C1—C6—C5 118.26 (15) C10—C12—H12A 110.9
C1—C6—C7 119.90 (15) C13—C12—H12B 110.9
C5—C6—C7 121.82 (15) C10—C12—H12B 110.9
N1—C7—C6 113.99 (13) H12A—C12—H12B 108.9
N1—C7—H7B 108.8 N3—C13—C12 102.45 (13)
C6—C7—H7B 108.8 N3—C13—H13A 111.3
N1—C7—H7A 108.8 C12—C13—H13A 111.3
C6—C7—H7A 108.8 N3—C13—H13B 111.3
H7B—C7—H7A 107.7 C12—C13—H13B 111.3
N1—C8—C9 104.13 (14) H13A—C13—H13B 109.2
N1—C8—H8A 110.9 O1—C14—N3 125.71 (15)
C9—C8—H8A 110.9 O1—C14—C10 125.64 (15)
N1—C8—H8B 110.9 N3—C14—C10 108.61 (14)
C9—C8—H8B 110.9
C6—C1—C2—C3 −0.4 (3) C7—N1—C11—C10 −165.66 (13)
C1—C2—C3—C4 0.6 (3) C8—N1—C11—C10 −43.71 (16)
C2—C3—C4—C5 0.0 (3) C14—C10—C11—N1 149.00 (13)
C3—C4—C5—C6 −0.7 (3) C12—C10—C11—N1 −98.41 (16)
C2—C1—C6—C5 −0.3 (2) C9—C10—C11—N1 27.42 (17)
C2—C1—C6—C7 −178.67 (16) C14—C10—C12—C13 28.06 (17)
C4—C5—C6—C1 0.9 (2) C9—C10—C12—C13 153.01 (15)
C4—C5—C6—C7 179.16 (16) C11—C10—C12—C13 −88.38 (16)
C11—N1—C7—C6 −179.16 (13) C14—N3—C13—C12 17.26 (19)
C8—N1—C7—C6 65.02 (18) C10—C12—C13—N3 −27.63 (17)
C1—C6—C7—N1 −156.04 (15) C13—N3—C14—O1 178.80 (16)
C5—C6—C7—N1 25.7 (2) C13—N3—C14—C10 0.86 (19)
C7—N1—C8—C9 162.37 (14) C12—C10—C14—O1 163.51 (16)
C11—N1—C8—C9 42.41 (16) C9—C10—C14—O1 37.4 (2)
N1—C8—C9—C10 −24.29 (18) C11—C10—C14—O1 −77.1 (2)
C8—C9—C10—C14 −119.53 (15) C12—C10—C14—N3 −18.55 (17)
C8—C9—C10—C12 121.90 (16) C9—C10—C14—N3 −144.63 (14)
C8—C9—C10—C11 −1.82 (18) C11—C10—C14—N3 100.81 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1i 0.88 2.14 2.9839 (19) 160

Symmetry codes: (i) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6338).

References

  1. Hale, J. J., Budhu, R. J., Mills, S. G., MacCoss, M., Malkowitz, L., Siciliano, S., Gould, S. L., DeMartino, J. A. & Springer, M. S. (2001). Bioorg. Med. Chem. Lett. 11, 1437–1440. [DOI] [PubMed]
  2. Kuroki, Y. & Iseki, K. (1999). Tetrahedron Lett. 40, 8231–8234.
  3. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Shen, D. M., et al. (2004). Bioorg. Med. Chem. Lett. 14, 953–957.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034301/hb6338sup1.cif

e-67-o2517-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034301/hb6338Isup2.hkl

e-67-o2517-Isup2.hkl (135.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034301/hb6338Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES