Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2394. doi: 10.1107/S1600536811031126

N-Methyl-l-leucyl-l-leucine hydro­chloride monohydrate

Tao Lu a, Mu-Wu Xu b,*, Xiao-Jian Liao a, Shi-Hai Xu a
PMCID: PMC3200702  PMID: 22058991

Abstract

In the title compound C13H27N2O3 +·Cl·H2O, obtained by deprotecting the amino and carboxyl groups of an inter­mediate in the synthesis of the cyclic penta­peptide Galaxamide, a number of hydrogen-bonding inter­actions occur including aminium N—H⋯Cl, amide–carboxyl N—H⋯O, water O—H⋯Cl and carbox­yl–water O—H⋯O associations. The aminium N—H⋯Cl⋯H—N bridging extensions give rise to zigzag chains extending along the a axis, the overall two-dimensional structure lying in the (110) plane.

Related literature

For general background to peptides, see: Humphrey & Chamberlin (1997). For the synthesis of Galaxamide, see: Xu, Liao, Xu et al. (2008); Rodriguez et al. (2007). For related structures, see: Liao et al. (2007); Xu, Liao, Diao et al. (2008). graphic file with name e-67-o2394-scheme1.jpg

Experimental

Crystal data

  • C13H27N2O3 +·Cl·H2O

  • M r = 312.83

  • Monoclinic, Inline graphic

  • a = 5.2212 (2) Å

  • b = 9.6032 (5) Å

  • c = 18.4081 (8) Å

  • β = 96.329 (4)°

  • V = 917.36 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 295 K

  • 0.45 × 0.32 × 0.17 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.990, T max = 1.000

  • 3703 measured reflections

  • 2616 independent reflections

  • 2271 reflections with I > 2sI)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.114

  • S = 1.01

  • 2616 reflections

  • 186 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983), 686 Friedel pairs

  • Flack parameter: −0.01 (8)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031126/zs2126sup1.cif

e-67-o2394-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031126/zs2126Isup2.hkl

e-67-o2394-Isup2.hkl (125.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031126/zs2126Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.90 2.31 3.174 (2) 161
N1—H1B⋯Cl1 0.90 2.25 3.092 (2) 155
N2—H2⋯O2ii 0.86 2.40 3.006 (3) 128
O3—H3A⋯O4 0.85 1.74 2.591 (5) 179
O4—H4A⋯Cl1iii 0.85 2.51 3.198 (4) 139
O4—H4B⋯Cl1iv 0.85 2.48 3.182 (4) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by grants from the National High Technology Development Project (863 Project, No. 2006 A A09Z408), the National Natural Science Fund (No. 20772048), the Tianhe Science and Technology Plan Project (No. 104zh134), and the Fundamental Research Funds for the Central Universities (Nos. 21611412 and 21611382)

supplementary crystallographic information

Comment

Peptide compounds play an important role in life activities (Humphrey & Chamberlin, 1997). The title compound C13H27N2O3+ Cl- . H2O (Fig. 1) is a modified dipeptide employed in the synthesis of the cytotoxic cyclic pentapeptide Galaxamide (Xu, Liao, Xu et al., 2008), obtained by deprotecting the amino and carboxyl groups of the intermediate (Rodriguez et al., 2007). The purpose was to explore the activity targets of the intermediates in relation to those of the target compound (Liao et al., 2007, Xu, Liao, Diao et al., 2008). In the crystal structure of the title compound, there are a number of intermolecular hydrogen-bonding interactions (Table 1), including aminium N—H···Cl, amide N—H···Ocarboxyl, water O—H···Cl and carboxylic acid O—H···Owater associations. The aminium N—H···Cl···H—N bridging extensions give zigzag chains extending along the a axis in the unit cell, the overall two-dimensional structure lying along (110) (Fig 2).

Experimental

Diisopropylethylamine (DIPEA) (6 mmol, 1.1 ml) was added dropwise to a stirred solution of L-leucine benzyl ester p-toluenesulfonate (6 mmol, 2.36 g) in anhydrous THF (8 ml) at 273 K under nitrogen and stirred for 15 min. The coupling reagent DEPBT (6 mmol, 1.8 g) was added to a stirred solution of N-Boc-Me—L-Leu-OH (5 mmol, 1.30 g) in anhydrous THF (5 ml) at 273 K under nitrogen and the suspension was stirred for 15 min. A suspension of L-leucine benzyl ester p-toluenesulfonate was added by cannula to the N-Boc-Me—L-Leu-OH suspension at 273 K under nitrogen and the mixture was allowed to warm to room temperature over the course of 24 h, then evaporated in vacuo. The crude product was then purified by chromatography on silica using n-hexane/acetone (20:1) as eluent to give the dipeptide as colorless crystals (yield 2.1g: 92.5%). This dipeptide (4 mmol, 1.8 g) was dissolved in CH2Cl2 (7 ml) and 2 ml of TFA was added dropwise at 273 K under nitrogen using a constant pressure funnel. The mixture was stirred at 273 K until the starting material disappeared (monitored by TLC). The solution was concentrated in vacuo, the residue was dissolved in CH2Cl22 and concentrated again to remove the Boc dipeptide derivative which was dried in vacuo. This Boc derivative (3 mmol, 1.91 g) was reduced with hydrogen (0.1 Mpa) and 10% Pd—C (0.62 g) in ethyl acetate (40 ml) until the starting material disappeared (monitored using TLC). The Pd—C was filtered, and the filtrate was concentrated in vacuo to obtain the title compound (yield 1.85 g: 97%). Colourless crystals suitable for X-ray analysis grew over a period of a week from a solution in methanol containing a small amount of dilute HCl, when exposed to air.

Refinement

The C-bound and O-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with distances 0.96 Å (CH3), 0.97 Å (CH2), 0.98 (CH), or 0.85 Å (OH) and Uiso(H) = 1.2Ueq(C, O) for methine, methylene, hydroxyl and carboxyl H atoms, and Uiso = 1.5Ueq(C) for methyl H atoms. The N H-atoms were located in a difference-Fourier synthesis and then refined as riding on the N atoms with Uiso(H) = 1.2Ueq(N). The known S absolute configuration for L-leucine [(S)-2-amino-4-methylvaleric acid] was invoked for both chiral centres in the title molecule (C1S,C3S).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom numbering scheme. Inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Fgure 2. A perspective view of the packing in the unit cell showing the hydrogen-bonding interactions as dashed lines.

Crystal data

C13H27N2O3+·Cl·H2O F(000) = 340
Mr = 312.83 Dx = 1.133 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.7107 Å
a = 5.2212 (2) Å Cell parameters from 1351 reflections
b = 9.6032 (5) Å θ = 3.1–29.1°
c = 18.4081 (8) Å µ = 0.22 mm1
β = 96.329 (4)° T = 295 K
V = 917.36 (7) Å3 Block, colourless
Z = 2 0.45 × 0.32 × 0.17 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD diffractometer 2616 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2271 reflections with I > 2s˘I)
graphite Rint = 0.015
Detector resolution: 16.0288 pixels mm-1 θmax = 26.0°, θmin = 3.1°
ω scans h = −6→6
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −7→11
Tmin = 0.990, Tmax = 1.000 l = −19→22
3703 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.065P)2 + 0.1023P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
2616 reflections Δρmax = 0.37 e Å3
186 parameters Δρmin = −0.22 e Å3
1 restraint Absolute structure: Flack (1983), 686 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.01 (8)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9159 (3) 0.8611 (2) 0.21026 (11) 0.0456 (7)
O2 1.1446 (4) 1.1632 (3) 0.27116 (12) 0.0647 (9)
O3 0.8114 (4) 1.1739 (3) 0.18571 (12) 0.0609 (8)
N1 0.5270 (4) 0.7595 (3) 0.09916 (12) 0.0467 (8)
N2 0.5803 (4) 0.9650 (3) 0.25512 (13) 0.0422 (8)
C1 0.4995 (5) 0.7609 (3) 0.17896 (15) 0.0407 (9)
C2 0.6837 (5) 0.8673 (3) 0.21552 (14) 0.0376 (8)
C3 0.7383 (5) 1.0686 (3) 0.29656 (15) 0.0429 (9)
C4 0.9252 (5) 1.1384 (3) 0.24936 (15) 0.0451 (9)
C5 0.5595 (5) 0.6146 (4) 0.20897 (15) 0.0460 (8)
C6 0.8781 (6) 1.0087 (4) 0.36714 (16) 0.0538 (10)
C7 0.5536 (5) 0.5991 (4) 0.29136 (15) 0.0477 (9)
C8 0.7036 (7) 0.9642 (5) 0.42373 (18) 0.0648 (13)
C9 0.6292 (8) 0.4502 (4) 0.3139 (2) 0.0718 (14)
C10 0.2924 (7) 0.6351 (6) 0.3153 (2) 0.0761 (14)
C11 0.8619 (12) 0.8836 (9) 0.4839 (3) 0.124 (3)
C12 0.5709 (8) 1.0854 (7) 0.4543 (2) 0.0883 (19)
C13 0.4878 (8) 0.8963 (5) 0.06236 (19) 0.0701 (14)
O4 1.0969 (8) 1.2934 (4) 0.09741 (19) 0.1200 (16)
Cl1 0.01614 (13) 0.60884 (9) 0.04716 (4) 0.0580 (3)
H1 0.32240 0.78610 0.18640 0.0490*
H1A 0.68570 0.72850 0.09280 0.0560*
H1B 0.41260 0.69860 0.07710 0.0560*
H2 0.41610 0.96640 0.25610 0.0510*
H3 0.62160 1.14120 0.31070 0.0520*
H3A 0.90570 1.21190 0.15680 0.0730*
H5A 0.43590 0.55010 0.18430 0.0550*
H5B 0.72900 0.58780 0.19700 0.0550*
H6A 0.97830 0.92880 0.35480 0.0640*
H6B 0.99780 1.07820 0.38890 0.0640*
H7 0.68190 0.66260 0.31610 0.0570*
H8 0.57160 0.90170 0.40000 0.0780*
H9A 0.50160 0.38660 0.29190 0.1070*
H9B 0.64010 0.44200 0.36620 0.1070*
H9C 0.79340 0.42830 0.29790 0.1070*
H10A 0.24780 0.72890 0.30110 0.1140*
H10B 0.29980 0.62660 0.36750 0.1140*
H10C 0.16460 0.57240 0.29260 0.1140*
H11A 0.94290 0.80570 0.46310 0.1850*
H11B 0.75120 0.85070 0.51860 0.1850*
H11C 0.99160 0.94350 0.50820 0.1850*
H12A 0.69730 1.14720 0.47860 0.1330*
H12B 0.45900 1.05260 0.48870 0.1330*
H12C 0.47140 1.13420 0.41540 0.1330*
H13A 0.50050 0.88560 0.01100 0.1050*
H13B 0.61720 0.96040 0.08280 0.1050*
H13C 0.32020 0.93160 0.06940 0.1050*
H4A 1.14740 1.23240 0.06880 0.1440*
H4B 1.01050 1.35560 0.07270 0.1440*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0316 (9) 0.0457 (13) 0.0607 (12) 0.0060 (9) 0.0102 (8) −0.0027 (11)
O2 0.0421 (11) 0.0755 (19) 0.0769 (14) −0.0069 (12) 0.0078 (10) 0.0094 (14)
O3 0.0645 (13) 0.0608 (16) 0.0567 (12) −0.0036 (13) 0.0038 (11) 0.0162 (12)
N1 0.0420 (12) 0.0530 (17) 0.0443 (13) −0.0020 (12) 0.0011 (10) 0.0028 (12)
N2 0.0325 (11) 0.0422 (15) 0.0526 (13) 0.0089 (11) 0.0075 (10) 0.0002 (12)
C1 0.0340 (12) 0.0426 (17) 0.0462 (15) 0.0045 (13) 0.0077 (11) 0.0011 (14)
C2 0.0342 (12) 0.0355 (16) 0.0434 (14) 0.0058 (13) 0.0059 (11) 0.0057 (13)
C3 0.0397 (13) 0.0399 (18) 0.0499 (15) 0.0089 (13) 0.0081 (12) −0.0017 (13)
C4 0.0446 (15) 0.0358 (18) 0.0555 (16) 0.0064 (14) 0.0083 (13) 0.0016 (14)
C5 0.0427 (13) 0.0393 (16) 0.0551 (15) −0.0006 (15) 0.0019 (11) 0.0009 (16)
C6 0.0487 (16) 0.062 (2) 0.0497 (17) 0.0062 (16) 0.0009 (13) 0.0009 (16)
C7 0.0475 (14) 0.0412 (17) 0.0535 (15) 0.0020 (16) 0.0022 (12) 0.0052 (16)
C8 0.073 (2) 0.071 (3) 0.0502 (17) −0.022 (2) 0.0056 (16) 0.0017 (18)
C9 0.076 (2) 0.050 (2) 0.088 (3) 0.004 (2) 0.003 (2) 0.018 (2)
C10 0.0628 (19) 0.092 (3) 0.077 (2) 0.008 (2) 0.0236 (17) 0.025 (3)
C11 0.151 (5) 0.144 (6) 0.077 (3) 0.009 (5) 0.018 (3) 0.054 (4)
C12 0.079 (2) 0.130 (5) 0.060 (2) −0.009 (3) 0.0255 (18) −0.015 (3)
C13 0.078 (2) 0.071 (3) 0.059 (2) −0.003 (2) −0.0021 (18) 0.018 (2)
O4 0.165 (3) 0.099 (3) 0.099 (2) −0.003 (3) 0.028 (2) 0.015 (2)
Cl1 0.0507 (4) 0.0606 (5) 0.0630 (4) −0.0075 (4) 0.0081 (3) −0.0114 (5)

Geometric parameters (Å, °)

O1—C2 1.228 (3) C1—H1 0.9800
O2—C4 1.195 (3) C3—H3 0.9800
O3—C4 1.300 (4) C5—H5B 0.9700
O3—H3A 0.8500 C5—H5A 0.9700
O4—H4B 0.8500 C6—H6A 0.9700
O4—H4A 0.8500 C6—H6B 0.9700
N1—C13 1.482 (5) C7—H7 0.9800
N1—C1 1.492 (4) C8—H8 0.9800
N2—C2 1.338 (4) C9—H9C 0.9600
N2—C3 1.454 (4) C9—H9B 0.9600
N1—H1A 0.9000 C9—H9A 0.9600
N1—H1B 0.9000 C10—H10B 0.9600
N2—H2 0.8600 C10—H10A 0.9600
C1—C5 1.529 (5) C10—H10C 0.9600
C1—C2 1.510 (4) C11—H11B 0.9600
C3—C4 1.531 (4) C11—H11A 0.9600
C3—C6 1.531 (4) C11—H11C 0.9600
C5—C7 1.528 (4) C12—H12B 0.9600
C6—C8 1.519 (5) C12—H12C 0.9600
C7—C10 1.519 (5) C12—H12A 0.9600
C7—C9 1.529 (5) C13—H13C 0.9600
C8—C12 1.496 (7) C13—H13A 0.9600
C8—C11 1.519 (8) C13—H13B 0.9600
C4—O3—H3A 116.00 C3—C6—H6B 108.00
H4A—O4—H4B 110.00 C8—C6—H6A 109.00
C1—N1—C13 114.8 (3) C3—C6—H6A 109.00
C2—N2—C3 121.7 (2) H6A—C6—H6B 108.00
C1—N1—H1B 109.00 C8—C6—H6B 109.00
C13—N1—H1A 108.00 C5—C7—H7 108.00
H1A—N1—H1B 108.00 C9—C7—H7 108.00
C1—N1—H1A 109.00 C10—C7—H7 108.00
C13—N1—H1B 109.00 C6—C8—H8 108.00
C2—N2—H2 119.00 C11—C8—H8 108.00
C3—N2—H2 119.00 C12—C8—H8 108.00
N1—C1—C2 108.6 (2) C7—C9—H9B 109.00
N1—C1—C5 108.0 (2) C7—C9—H9C 110.00
C2—C1—C5 111.5 (2) H9A—C9—H9B 109.00
O1—C2—C1 121.2 (2) H9A—C9—H9C 109.00
N2—C2—C1 116.2 (2) H9B—C9—H9C 109.00
O1—C2—N2 122.6 (3) C7—C9—H9A 110.00
N2—C3—C6 112.2 (3) C7—C10—H10A 109.00
C4—C3—C6 111.9 (2) C7—C10—H10B 109.00
N2—C3—C4 111.2 (2) H10A—C10—H10B 110.00
O2—C4—C3 123.0 (3) H10A—C10—H10C 110.00
O3—C4—C3 111.7 (2) H10B—C10—H10C 109.00
O2—C4—O3 125.2 (3) C7—C10—H10C 110.00
C1—C5—C7 115.0 (3) C8—C11—H11B 109.00
C3—C6—C8 115.0 (3) C8—C11—H11C 109.00
C5—C7—C10 112.5 (2) C8—C11—H11A 110.00
C9—C7—C10 110.3 (3) H11A—C11—H11C 109.00
C5—C7—C9 109.1 (3) H11B—C11—H11C 109.00
C6—C8—C12 112.1 (4) H11A—C11—H11B 109.00
C11—C8—C12 111.1 (4) C8—C12—H12A 109.00
C6—C8—C11 108.9 (3) C8—C12—H12B 109.00
C2—C1—H1 110.00 H12A—C12—H12B 109.00
C5—C1—H1 110.00 H12A—C12—H12C 109.00
N1—C1—H1 110.00 C8—C12—H12C 110.00
C4—C3—H3 107.00 H12B—C12—H12C 109.00
C6—C3—H3 107.00 N1—C13—H13B 109.00
N2—C3—H3 107.00 N1—C13—H13C 109.00
C1—C5—H5B 109.00 N1—C13—H13A 110.00
C7—C5—H5A 108.00 H13A—C13—H13C 109.00
C7—C5—H5B 109.00 H13B—C13—H13C 109.00
H5A—C5—H5B 107.00 H13A—C13—H13B 109.00
C1—C5—H5A 109.00
C13—N1—C1—C2 −56.0 (3) C2—C1—C5—C7 57.8 (3)
C13—N1—C1—C5 −177.1 (2) N2—C3—C4—O2 −138.2 (3)
C3—N2—C2—O1 −1.8 (4) N2—C3—C4—O3 45.8 (3)
C3—N2—C2—C1 176.3 (2) C6—C3—C4—O2 −11.8 (4)
C2—N2—C3—C4 49.6 (3) C6—C3—C4—O3 172.1 (3)
C2—N2—C3—C6 −76.5 (3) N2—C3—C6—C8 −66.0 (4)
N1—C1—C2—O1 −56.6 (3) C4—C3—C6—C8 168.1 (3)
N1—C1—C2—N2 125.2 (3) C1—C5—C7—C9 −177.4 (3)
C5—C1—C2—O1 62.3 (3) C1—C5—C7—C10 59.8 (4)
C5—C1—C2—N2 −115.9 (3) C3—C6—C8—C11 169.8 (4)
N1—C1—C5—C7 177.1 (2) C3—C6—C8—C12 −66.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1i 0.90 2.31 3.174 (2) 161
N1—H1B···Cl1 0.90 2.25 3.092 (2) 155
N2—H2···O2ii 0.86 2.40 3.006 (3) 128
O3—H3A···O4 0.85 1.74 2.591 (5) 179
O4—H4A···Cl1iii 0.85 2.51 3.198 (4) 139
O4—H4B···Cl1iv 0.85 2.48 3.182 (4) 141
C1—H1···O1ii 0.98 2.33 3.306 (3) 175
C3—H3···O2ii 0.98 2.53 3.215 (3) 127

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z; (iv) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2126).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies UK Ltd, Yarnton, England.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Humphrey, J. M. & Chamberlin, A. R. (1997). Chem. Rev. 97, 2243–2266. [DOI] [PubMed]
  5. Liao, X.-J., Xu, W.-J., Xu, S.-H. & Dong, F.-F. (2007). Acta Cryst. E63, o3313.
  6. Rodriguez, R. A., Pan, P. S., Pan, C. M., Ravula, S., Lapera, S., Singh, E. K., Styers, T. J., Brown, J. D., Cajica, J., Parry, E., Otrubova, K. & McAlpine, S. R. (2007). J. Org. Chem. 72, 1980–2002. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Xu, W. J., Liao, X. J., Diao, J. Z., Zhou, L. & Xu, S. H. (2008). Acta Cryst. E64, o2178. [DOI] [PMC free article] [PubMed]
  9. Xu, W.-J., Liao, X.-J., Xu, S.-H., Diao, J.-Z., Du, B., Zhou, X.-L. & Pan, S.-S. (2008). Org. Lett. 10, 4569–4572. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031126/zs2126sup1.cif

e-67-o2394-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031126/zs2126Isup2.hkl

e-67-o2394-Isup2.hkl (125.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031126/zs2126Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES