Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 6;67(Pt 9):m1204. doi: 10.1107/S1600536811031072

trans-Diaqua­bis­(dl-valinato-κ2 N,O)nickel(II)

Amel Messai a, Rim Benali-Cherif a,*, Erwann Jeanneau b, Nourredine Benali-Cherif a
PMCID: PMC3200705  PMID: 22065415

Abstract

In the title complex, [Ni(C5H9NO2)2(H2O)2], the NiII atom, located on a centre of inversion, is trans-coordinated by two O atoms and two N atoms from d-bidentate valine and l-bidentate valine ligands and two water O atoms in an octa­hedral geometry. In the crystal, the discrete mononuclear units are linked into a three-dimensional network via O—H⋯O and N—H⋯O hydrogen bonds. C—H⋯O inter­actions are also observed.

Related literature

For amino ­acids as ligands, see: Loo et al. (2005); Patrick et al. (2003). For valine, see: Ooiwa et al. (1995). For related complexes, see: Menabue et al. (1998)graphic file with name e-67-m1204-scheme1.jpg

Experimental

Crystal data

  • [Ni(C5H9NO2)2(H2O)2]

  • M r = 325.01

  • Monoclinic, Inline graphic

  • a = 24.8881 (2) Å

  • b = 5.8701 (3) Å

  • c = 10.0789 (2) Å

  • β = 90.442 (3)°

  • V = 1472.44 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Nonius Mach3 KappaCCD diffractometer

  • 2024 measured reflections

  • 1960 independent reflections

  • 1053 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.151

  • S = 1.03

  • 1960 reflections

  • 94 parameters

  • 1 restraint

  • H-atom parameters not refined

  • Δρmax = 0.48 e Å−3

  • Δρmin = −1.26 e Å−3

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031072/ds2128sup1.cif

e-67-m1204-sup1.cif (16KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031072/ds2128Isup2.hkl

e-67-m1204-Isup2.hkl (67.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.92 2.45 (3) 3.286 (5) 152
O1W—H1W⋯O1ii 0.95 1.74 2.684 (4) 172
O1W—H2W⋯O2iii 0.87 2.04 2.856 (5) 155
C5—H5A⋯O2i 0.96 2.53 3.483 (6) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Centre Universitaire Abbes Laghrour de Khenchela and the Ministére de l’Enseignement Supérieur et de la Recherche Scientifique–Algeria for financial support via the PNE programme, and Professor Dominique Luneau of Lyon University (France) for the data-collection facilities.

supplementary crystallographic information

Comment

Complexes of transition metals and amino acids have been extensively studied as models for the metal-binding sites in proteins. Amino acids are versatile ligands showing flexible coordination modes (Loo et al., 2005) and they can coordinate to metal ions by their carboxylate and /or amino groups. Amino acid-metal complexes and their derivatives are of great importance because of their biochemical and pharmacological properties (Patrick et al., 2003). Valine is an essential amino acid (Ooiwa et al.; 1995), and it can chelate to metal ions via its amino N atom and carboxylate O atom (Menabue et al.,1998). As a part of our studies on structural and properties of metal ion-amino acid complexes, we are reporting here the synthesis, crystal structure of a new Ni(DL-Val)2(H2O)2. The title compound is mononuclear, Ni(II) metal shows an octahedral geometry, it is in tans coordinated to D-bidentate valinate, L– bidentate valinate ions and two water molecules (Fig. 1). Each valinate ion chelates to the metal ion through its amino N atom and one of the carboxylate O atoms. The Ni—Oc (c = carboxylate, 2.019 (3) Å), Ni—Ow (w = water, 2.095 (3) Å) and Ni—N (2.087 (3) Å) bond distances agree well with published results for related complexes. The C—O bond of the noncoordinated carboxylate O atom [C1—O2 = 1.234 (5) Å] is only slightly shorter than the coordinated bond to the Ni ion [C1—O1 = 1.261 (6) Å], suggesting the involvement of atom O2 in hydrogen bonding, as described below. The crystal packing of (I) (Fig. 2) involves both N—H···O and O—H···O hydrogen bonds. The coordinated carboxylate O1 atom accepts an intermolecular hydrogen bond from the O1w water molecule. The non-coordinated atom O2 accepts hydrogen bonds from the O1w—H2w and N1—H1N1 groups of two different adjacent molecules. These interactions result in a two-dimensional network of hydrogen bonds.

Experimental

To a hot solution (333 K) of guanidinoacetic acid (0.2342 g, 2 mmol) and DL-valine (0.2342 g, 2 mmol) in deionized water (100 ml) was slowly added a solution of nickel (II) nitrate (0.1827 g, 1 mmol) in deionized water (5 ml). The reaction mixture was stirred at 333 K for 8 h, cooled slowly to 277 K, and the pH adjusted to 6.0 with KOH (3 M). The white precipitate which formed was filtered off and the filtrate was stored in a covered vessel. Thin blue plate-like crystals began to be formed after the some weeks and were collected and washed with absolute ethanol and dried at 323 K.

Refinement

The title compound crystallizes in the centrosymmetric space group C 2/c. All non-H atoms were refined with anisotropic atomic displacement parameters. H-atoms of water molecules and nitrohen were located in difference Fourier syntheses and not refined. Hydrogen atoms linked to carbon atoms were positioned geometrically and refined with a riding model, fixing the bond lengths at 0.98 and 0.96 A ° for CH and CH3 groups, respectively. The Uiso(H) values were constrained to be 1.2Ueq (parent) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I), showing the atom-numbering scheme and 30% displacement ellipsoids (arbitrary spheres for the H atoms)..

Fig. 2.

Fig. 2.

The packing for (I), viewed down [001], showing hydrogen bonds as dashed lines.

Crystal data

[Ni(C5H9NO2)2(H2O)2] F(000) = 688
Mr = 325.01 Dx = 1.466 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1960 reflections
a = 24.8881 (2) Å θ = 3.3–29.1°
b = 5.8701 (3) Å µ = 1.34 mm1
c = 10.0789 (2) Å T = 293 K
β = 90.442 (3)° Placket, blue
V = 1472.44 (8) Å3 0.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Nonius Mach3 KappaCCD diffractometer 1053 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.023
graphite θmax = 29.2°, θmin = 3.3°
φ and ω scans h = −31→16
2024 measured reflections k = −4→7
1960 independent reflections l = −13→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters not refined
S = 1.03 w = 1/[σ2(Fo2) + (0.1031P)2] where P = (Fo2 + 2Fc2)/3
1960 reflections (Δ/σ)max < 0.001
94 parameters Δρmax = 0.48 e Å3
1 restraint Δρmin = −1.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.2500 0.2500 0.5000 0.0306 (3)
O1 0.21580 (12) 0.5058 (5) 0.6033 (3) 0.0482 (7)
O1W 0.26506 (15) 0.4700 (6) 0.3410 (3) 0.0706 (11)
H1W 0.2466 0.4915 0.2588 0.106*
H2W 0.2902 0.5473 0.3818 0.106*
O2 0.14621 (18) 0.7348 (5) 0.6067 (4) 0.0693 (12)
N1 0.17065 (13) 0.2015 (6) 0.4376 (3) 0.0363 (8)
H1N 0.1516 0.0810 0.4722 0.044*
C1 0.16898 (19) 0.5618 (7) 0.5671 (4) 0.0452 (10)
C2 0.13961 (16) 0.4099 (7) 0.4637 (4) 0.0417 (9)
H2 0.1387 0.4962 0.3805 0.050*
C3 0.08064 (17) 0.3674 (8) 0.5024 (4) 0.0482 (10)
H3 0.0632 0.5162 0.5115 0.058*
C4 0.0511 (2) 0.2376 (9) 0.3929 (6) 0.0711 (17)
H4A 0.0135 0.2290 0.4137 0.107*
H4B 0.0656 0.0865 0.3861 0.107*
H4C 0.0555 0.3157 0.3100 0.107*
C5 0.0749 (2) 0.2437 (8) 0.6330 (5) 0.0662 (15)
H5A 0.0899 0.0936 0.6255 0.099*
H5B 0.0376 0.2325 0.6551 0.099*
H5C 0.0936 0.3264 0.7013 0.099*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0303 (4) 0.0399 (4) 0.0215 (3) −0.0096 (3) −0.0074 (2) 0.0002 (3)
O1 0.0422 (16) 0.0578 (18) 0.0444 (15) −0.0082 (14) −0.0154 (13) −0.0173 (14)
O1W 0.095 (3) 0.079 (2) 0.0377 (15) −0.053 (2) −0.0269 (16) 0.0222 (16)
O2 0.080 (3) 0.0384 (18) 0.089 (3) 0.0107 (16) −0.022 (2) −0.0196 (16)
N1 0.0307 (17) 0.0426 (19) 0.0356 (16) −0.0079 (13) −0.0048 (13) −0.0087 (13)
C1 0.058 (3) 0.037 (2) 0.041 (2) −0.010 (2) −0.0073 (19) −0.0010 (17)
C2 0.041 (2) 0.045 (2) 0.0385 (19) −0.0071 (18) −0.0112 (17) 0.0018 (17)
C3 0.037 (2) 0.045 (2) 0.063 (3) 0.0036 (18) −0.004 (2) −0.006 (2)
C4 0.044 (3) 0.099 (5) 0.070 (4) −0.015 (3) −0.018 (3) −0.005 (3)
C5 0.066 (3) 0.074 (4) 0.058 (3) −0.013 (2) 0.018 (3) −0.013 (2)

Geometric parameters (Å, °)

Ni1—O1 2.019 (3) C1—C2 1.550 (5)
Ni1—O1i 2.019 (3) C2—C3 1.542 (6)
Ni1—N1 2.087 (3) C2—H2 0.9800
Ni1—N1i 2.087 (3) C3—C5 1.511 (6)
Ni1—O1Wi 2.095 (3) C3—C4 1.525 (6)
Ni1—O1W 2.095 (3) C3—H3 0.9800
O1—C1 1.262 (5) C4—H4A 0.9600
O1W—H1W 0.9519 C4—H4B 0.9600
O1W—H2W 0.8736 C4—H4C 0.9600
O2—C1 1.231 (5) C5—H5A 0.9600
N1—C2 1.472 (5) C5—H5B 0.9600
N1—H1N 0.9209 C5—H5C 0.9600
O1—Ni1—O1i 180.00 (13) N1—C2—C3 114.4 (3)
O1—Ni1—N1 81.68 (11) N1—C2—C1 110.7 (3)
O1i—Ni1—N1 98.32 (11) C3—C2—C1 111.6 (4)
O1—Ni1—N1i 98.32 (11) N1—C2—H2 106.6
O1i—Ni1—N1i 81.68 (11) C3—C2—H2 106.6
N1—Ni1—N1i 180.00 (6) C1—C2—H2 106.6
O1—Ni1—O1Wi 89.15 (15) C5—C3—C4 110.0 (4)
O1i—Ni1—O1Wi 90.85 (15) C5—C3—C2 113.2 (4)
N1—Ni1—O1Wi 88.38 (13) C4—C3—C2 110.7 (4)
N1i—Ni1—O1Wi 91.62 (13) C5—C3—H3 107.6
O1—Ni1—O1W 90.85 (15) C4—C3—H3 107.6
O1i—Ni1—O1W 89.15 (15) C2—C3—H3 107.6
N1—Ni1—O1W 91.62 (13) C3—C4—H4A 109.5
N1i—Ni1—O1W 88.38 (13) C3—C4—H4B 109.5
O1Wi—Ni1—O1W 180.0 H4A—C4—H4B 109.5
C1—O1—Ni1 115.9 (2) C3—C4—H4C 109.5
Ni1—O1W—H1W 131.2 H4A—C4—H4C 109.5
Ni1—O1W—H2W 95.2 H4B—C4—H4C 109.5
H1W—O1W—H2W 132.9 C3—C5—H5A 109.5
C2—N1—Ni1 109.2 (2) C3—C5—H5B 109.5
C2—N1—H1N 107.4 H5A—C5—H5B 109.5
Ni1—N1—H1N 118.6 C3—C5—H5C 109.5
O2—C1—O1 123.2 (4) H5A—C5—H5C 109.5
O2—C1—C2 118.5 (4) H5B—C5—H5C 109.5
O1—C1—C2 118.3 (4)
O1i—Ni1—O1—C1 136 (100) Ni1—O1—C1—C2 8.8 (5)
N1—Ni1—O1—C1 −15.6 (3) Ni1—N1—C2—C3 −145.7 (3)
N1i—Ni1—O1—C1 164.4 (3) Ni1—N1—C2—C1 −18.6 (4)
O1Wi—Ni1—O1—C1 −104.1 (3) O2—C1—C2—N1 −174.8 (4)
O1W—Ni1—O1—C1 75.9 (3) O1—C1—C2—N1 7.4 (5)
O1—Ni1—N1—C2 18.4 (2) O2—C1—C2—C3 −46.2 (5)
O1i—Ni1—N1—C2 −161.6 (2) O1—C1—C2—C3 136.0 (4)
N1i—Ni1—N1—C2 −115 (70) N1—C2—C3—C5 65.0 (5)
O1Wi—Ni1—N1—C2 107.8 (3) C1—C2—C3—C5 −61.6 (5)
O1W—Ni1—N1—C2 −72.2 (3) N1—C2—C3—C4 −59.0 (5)
Ni1—O1—C1—O2 −168.9 (4) C1—C2—C3—C4 174.4 (4)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2ii 0.92 2.45 (3) 3.286 (5) 152
O1W—H1W···O1iii 0.95 1.74 2.684 (4) 172
O1W—H2W···O2iv 0.87 2.04 2.856 (5) 155
C5—H5A···O2ii 0.96 2.53 3.483 (6) 170

Symmetry codes: (ii) x, y−1, z; (iii) x, −y+1, z−1/2; (iv) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2128).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Loo, B.-Y., Yuan, D.-Q., Wu, B.-L., Han, L., Jiang, F.-L. & Hong, M.-C. (2005). Inorg. Chem. Commun. 8, 539–542.
  5. Menabue, L., Saladini, M., Bavoso, A. & Ostuni, A. (1998). Inorg. Chim. Acta, 268, 205–210.
  6. Nonius (1998). KappaCCD Server Software Nonius BV, Delft, The Netherlands.
  7. Ooiwa, T., Goto, H., Tsukamoto, Y., Hayakawa, T., Sugiyama, S., Fujitsuka, N. & Shimomura, Y. (1995). Biochim. Biophys. Acta, 1243, 216–220. [DOI] [PubMed]
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Patrick, D., Prasad, P. K. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031072/ds2128sup1.cif

e-67-m1204-sup1.cif (16KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031072/ds2128Isup2.hkl

e-67-m1204-Isup2.hkl (67.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES