Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2337. doi: 10.1107/S160053681103220X

(E)-3-Hy­droxy-5,5-dimethyl-2-(3-phenyl­prop-2-en-1-yl)cyclo­hex-2-en-1-one

Afsaneh Zonouzi a, Zakieh Izakiana a, Seik Weng Ng b,c,*
PMCID: PMC3200708  PMID: 22058958

Abstract

Five of the atoms of the six-membered cyclo­hexene ring of the title compound, C17H20O2, are essentially coplanar (r.m.s. deviation = 0.006 Å), with the sixth (the dimethyl­methyl C atom) deviating from the mean plane of the five atoms by 0.610 (2) Å. This plane is nearly perpendicular to the cinnamyl portion, the two planes being aligned at 85.1 (1)°. Two mol­ecules are linked by an O—H⋯O hydrogen bond about a center of inversion. The cyclo­hexene ring is disordered over two directly overlapping positions. As a result, the hy­droxy group and the keto O atom cannot be distinguished from one another.

Related literature

For the synthesis, see: Gan et al. (2008).graphic file with name e-67-o2337-scheme1.jpg

Experimental

Crystal data

  • C17H20O2

  • M r = 256.33

  • Triclinic, Inline graphic

  • a = 5.6480 (2) Å

  • b = 10.9077 (5) Å

  • c = 12.4762 (8) Å

  • α = 70.999 (5)°

  • β = 89.533 (4)°

  • γ = 75.783 (4)°

  • V = 702.31 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.977, T max = 0.985

  • 6734 measured reflections

  • 3119 independent reflections

  • 2554 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.120

  • S = 1.02

  • 3119 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103220X/bt5605sup1.cif

e-67-o2337-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103220X/bt5605Isup2.hkl

e-67-o2337-Isup2.hkl (153KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103220X/bt5605Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.84 1.76 2.582 (2) 166
O2—H2⋯O2ii 0.84 1.74 2.569 (2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Iran National Science Foundation and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Dimedone condenses with aromatic aldehydes. Cinnamaldehyde is the aldehyde in the present study. The compound C17H20O2 (Scheme I, Fig. 1) possess a hydroxy as well as a ketonic unit; these interact by an O–H···O hydrogen bond to generate a hydrogen-bonded dimer (Table 1). The synthesis illustrates the direct activation of a C–O bond of a cyclic 1,3-dione to yield the C-alkylated product; an earlier report detailed the synthesis that is catalyzed by palladium compounds (Gan et al., 2008). Five of the atoms of the six-membered cyclohexene ring of C17H20O2 are coplanar, with the sixth (the dimethylmethyl carbon) deviating from the mean-plane of the five. This plane is perpendicular to the cinnamyl portion. Two molecules are linked by an O–H···O hydrogen bond about a center-of-inversion (Table 1).

Experimental

To a stirred solution of dimedone (0.68 g, 5 mmol) and cinnamaldehyde (0.66 g, 5 mmol) in ethanol (10 ml) was added zinc chloride (1 mmol) along with a small amount of a primary amine as catalyst. The mixture was heated for 12 h. The product was purified by column chromatography on silica gel by using an ethyl acetate/n-hexane (1:3) solvent system. The compound was recrystallized from ethyl acetate to give colorless crystals (yield 70%).

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The hydroxy H-atom is disordered over two positions, and the occupancy was assumed to be 0.5. The two half-occupancy atoms were already treated as riding [O—H 0.84 Å, Uiso(H) 1.5Ueq(O)].

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C17H20O2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C17H20O2 Z = 2
Mr = 256.33 F(000) = 276
Triclinic, P1 Dx = 1.212 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.6480 (2) Å Cell parameters from 3442 reflections
b = 10.9077 (5) Å θ = 2.3–29.3°
c = 12.4762 (8) Å µ = 0.08 mm1
α = 70.999 (5)° T = 100 K
β = 89.533 (4)° Block, colorless
γ = 75.783 (4)° 0.30 × 0.25 × 0.20 mm
V = 702.31 (6) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3119 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2554 reflections with I > 2σ(I)
Mirror Rint = 0.026
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −14→14
Tmin = 0.977, Tmax = 0.985 l = −11→16
6734 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.1884P] where P = (Fo2 + 2Fc2)/3
3119 reflections (Δ/σ)max = 0.001
174 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.21 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.86917 (17) 0.62115 (9) 0.45112 (9) 0.0271 (3)
H1 0.9361 0.5411 0.4900 0.041* 0.50
O2 0.19642 (18) 0.96431 (9) 0.45314 (9) 0.0290 (3)
H2 0.0794 0.9797 0.4929 0.044* 0.50
C1 0.6812 (2) 0.66673 (13) 0.50012 (11) 0.0197 (3)
C2 0.6155 (3) 0.57371 (13) 0.60766 (12) 0.0233 (3)
H2A 0.7686 0.5134 0.6523 0.028*
H2B 0.5231 0.5172 0.5873 0.028*
C3 0.4630 (2) 0.64378 (13) 0.68296 (12) 0.0205 (3)
C4 0.2525 (2) 0.75600 (14) 0.60738 (12) 0.0232 (3)
H4A 0.1305 0.7150 0.5857 0.028*
H4B 0.1708 0.8122 0.6521 0.028*
C5 0.3312 (2) 0.84458 (13) 0.50111 (11) 0.0205 (3)
C6 0.5413 (2) 0.79848 (13) 0.45053 (11) 0.0204 (3)
C7 0.3597 (3) 0.54314 (14) 0.77432 (13) 0.0279 (3)
H7A 0.2623 0.5885 0.8223 0.042*
H7B 0.4949 0.4707 0.8213 0.042*
H7C 0.2558 0.5056 0.7380 0.042*
C8 0.6225 (2) 0.70218 (14) 0.74076 (12) 0.0246 (3)
H8A 0.5235 0.7468 0.7888 0.037*
H8B 0.6887 0.7674 0.6828 0.037*
H8C 0.7578 0.6298 0.7878 0.037*
C9 0.6047 (2) 0.88745 (13) 0.34042 (12) 0.0218 (3)
H9A 0.7842 0.8612 0.3361 0.026*
H9B 0.5595 0.9811 0.3404 0.026*
C10 0.4806 (2) 0.88266 (13) 0.23604 (12) 0.0232 (3)
H10 0.5208 0.9356 0.1648 0.028*
C11 0.3217 (2) 0.81262 (13) 0.23315 (12) 0.0223 (3)
H11 0.2803 0.7602 0.3043 0.027*
C12 0.2022 (2) 0.80775 (13) 0.13049 (12) 0.0218 (3)
C13 0.0192 (2) 0.74014 (14) 0.14118 (13) 0.0257 (3)
H13 −0.0262 0.6972 0.2147 0.031*
C14 −0.0978 (3) 0.73432 (15) 0.04654 (14) 0.0303 (4)
H14 −0.2210 0.6869 0.0557 0.036*
C15 −0.0356 (3) 0.79759 (15) −0.06144 (14) 0.0294 (3)
H15 −0.1168 0.7944 −0.1265 0.035*
C16 0.1453 (3) 0.86525 (14) −0.07378 (13) 0.0275 (3)
H16 0.1881 0.9093 −0.1476 0.033*
C17 0.2645 (3) 0.86914 (14) 0.02109 (13) 0.0256 (3)
H17 0.3910 0.9144 0.0116 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0254 (5) 0.0248 (5) 0.0264 (6) 0.0015 (4) 0.0035 (4) −0.0083 (4)
O2 0.0268 (5) 0.0248 (5) 0.0275 (6) 0.0032 (4) 0.0059 (4) −0.0055 (4)
C1 0.0183 (6) 0.0232 (6) 0.0187 (7) −0.0033 (5) 0.0006 (5) −0.0100 (6)
C2 0.0290 (7) 0.0201 (6) 0.0191 (7) −0.0029 (6) 0.0011 (5) −0.0065 (5)
C3 0.0201 (6) 0.0218 (6) 0.0188 (7) −0.0050 (5) 0.0027 (5) −0.0059 (5)
C4 0.0189 (6) 0.0276 (7) 0.0210 (8) −0.0039 (6) 0.0022 (5) −0.0067 (6)
C5 0.0190 (6) 0.0216 (6) 0.0197 (7) −0.0021 (5) −0.0008 (5) −0.0076 (5)
C6 0.0208 (6) 0.0225 (6) 0.0179 (7) −0.0045 (5) 0.0004 (5) −0.0075 (5)
C7 0.0292 (7) 0.0281 (7) 0.0236 (8) −0.0078 (6) 0.0044 (6) −0.0047 (6)
C8 0.0226 (7) 0.0296 (7) 0.0226 (8) −0.0047 (6) 0.0006 (5) −0.0116 (6)
C9 0.0215 (6) 0.0202 (6) 0.0220 (8) −0.0041 (5) 0.0030 (5) −0.0056 (5)
C10 0.0249 (7) 0.0237 (7) 0.0180 (7) −0.0047 (6) 0.0038 (5) −0.0040 (5)
C11 0.0228 (6) 0.0225 (6) 0.0174 (7) −0.0026 (5) 0.0028 (5) −0.0036 (5)
C12 0.0214 (6) 0.0204 (6) 0.0204 (7) −0.0008 (5) 0.0016 (5) −0.0061 (5)
C13 0.0242 (7) 0.0239 (7) 0.0247 (8) −0.0046 (6) 0.0017 (6) −0.0035 (6)
C14 0.0257 (7) 0.0306 (7) 0.0354 (9) −0.0109 (6) 0.0003 (6) −0.0093 (7)
C15 0.0286 (7) 0.0323 (8) 0.0288 (9) −0.0058 (6) −0.0025 (6) −0.0134 (7)
C16 0.0319 (7) 0.0296 (7) 0.0216 (8) −0.0076 (6) 0.0054 (6) −0.0098 (6)
C17 0.0253 (7) 0.0289 (7) 0.0250 (8) −0.0106 (6) 0.0047 (6) −0.0095 (6)

Geometric parameters (Å, °)

O1—C1 1.2946 (16) C8—H8B 0.9800
O1—H1 0.8400 C8—H8C 0.9800
O2—C5 1.2858 (16) C9—C10 1.506 (2)
O2—H2 0.8400 C9—H9A 0.9900
C1—C6 1.3941 (18) C9—H9B 0.9900
C1—C2 1.5026 (19) C10—C11 1.3212 (19)
C2—C3 1.5296 (19) C10—H10 0.9500
C2—H2A 0.9900 C11—C12 1.475 (2)
C2—H2B 0.9900 C11—H11 0.9500
C3—C8 1.5260 (19) C12—C13 1.3922 (19)
C3—C7 1.5276 (19) C12—C17 1.396 (2)
C3—C4 1.5339 (17) C13—C14 1.385 (2)
C4—C5 1.5020 (19) C13—H13 0.9500
C4—H4A 0.9900 C14—C15 1.386 (2)
C4—H4B 0.9900 C14—H14 0.9500
C5—C6 1.4002 (18) C15—C16 1.381 (2)
C6—C9 1.5005 (19) C15—H15 0.9500
C7—H7A 0.9800 C16—C17 1.384 (2)
C7—H7B 0.9800 C16—H16 0.9500
C7—H7C 0.9800 C17—H17 0.9500
C8—H8A 0.9800
C1—O1—H1 109.5 C3—C8—H8B 109.5
C5—O2—H2 109.5 H8A—C8—H8B 109.5
O1—C1—C6 119.59 (12) C3—C8—H8C 109.5
O1—C1—C2 118.58 (11) H8A—C8—H8C 109.5
C6—C1—C2 121.80 (11) H8B—C8—H8C 109.5
C1—C2—C3 114.71 (11) C6—C9—C10 114.36 (11)
C1—C2—H2A 108.6 C6—C9—H9A 108.7
C3—C2—H2A 108.6 C10—C9—H9A 108.7
C1—C2—H2B 108.6 C6—C9—H9B 108.7
C3—C2—H2B 108.6 C10—C9—H9B 108.7
H2A—C2—H2B 107.6 H9A—C9—H9B 107.6
C8—C3—C7 108.85 (12) C11—C10—C9 126.85 (13)
C8—C3—C2 110.02 (11) C11—C10—H10 116.6
C7—C3—C2 109.82 (11) C9—C10—H10 116.6
C8—C3—C4 110.21 (11) C10—C11—C12 126.52 (13)
C7—C3—C4 109.84 (11) C10—C11—H11 116.7
C2—C3—C4 108.10 (11) C12—C11—H11 116.7
C5—C4—C3 114.10 (11) C13—C12—C17 117.74 (13)
C5—C4—H4A 108.7 C13—C12—C11 119.70 (13)
C3—C4—H4A 108.7 C17—C12—C11 122.56 (12)
C5—C4—H4B 108.7 C14—C13—C12 121.20 (14)
C3—C4—H4B 108.7 C14—C13—H13 119.4
H4A—C4—H4B 107.6 C12—C13—H13 119.4
O2—C5—C6 119.25 (12) C13—C14—C15 120.14 (14)
O2—C5—C4 118.89 (11) C13—C14—H14 119.9
C6—C5—C4 121.80 (11) C15—C14—H14 119.9
C1—C6—C5 119.10 (12) C16—C15—C14 119.51 (14)
C1—C6—C9 120.71 (12) C16—C15—H15 120.2
C5—C6—C9 120.07 (11) C14—C15—H15 120.2
C3—C7—H7A 109.5 C15—C16—C17 120.19 (14)
C3—C7—H7B 109.5 C15—C16—H16 119.9
H7A—C7—H7B 109.5 C17—C16—H16 119.9
C3—C7—H7C 109.5 C16—C17—C12 121.20 (13)
H7A—C7—H7C 109.5 C16—C17—H17 119.4
H7B—C7—H7C 109.5 C12—C17—H17 119.4
C3—C8—H8A 109.5
O1—C1—C2—C3 157.55 (12) O2—C5—C6—C9 −1.2 (2)
C6—C1—C2—C3 −24.44 (18) C4—C5—C6—C9 176.16 (12)
C1—C2—C3—C8 −72.89 (14) C1—C6—C9—C10 90.63 (15)
C1—C2—C3—C7 167.32 (11) C5—C6—C9—C10 −85.41 (15)
C1—C2—C3—C4 47.50 (15) C6—C9—C10—C11 2.01 (19)
C8—C3—C4—C5 71.88 (15) C9—C10—C11—C12 −179.55 (12)
C7—C3—C4—C5 −168.20 (12) C10—C11—C12—C13 −173.29 (13)
C2—C3—C4—C5 −48.39 (15) C10—C11—C12—C17 6.5 (2)
C3—C4—C5—O2 −156.07 (12) C17—C12—C13—C14 −0.2 (2)
C3—C4—C5—C6 26.60 (18) C11—C12—C13—C14 179.59 (12)
O1—C1—C6—C5 176.74 (12) C12—C13—C14—C15 −0.7 (2)
C2—C1—C6—C5 −1.3 (2) C13—C14—C15—C16 0.6 (2)
O1—C1—C6—C9 0.7 (2) C14—C15—C16—C17 0.4 (2)
C2—C1—C6—C9 −177.34 (12) C15—C16—C17—C12 −1.3 (2)
O2—C5—C6—C1 −177.27 (12) C13—C12—C17—C16 1.2 (2)
C4—C5—C6—C1 0.1 (2) C11—C12—C17—C16 −178.59 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O1i 0.84 1.76 2.582 (2) 166
O2—H2···O2ii 0.84 1.74 2.569 (2) 167

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5605).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Gan, K.-H., Jhong, C.-J. & Yang, S.-C. (2008). Tetrahedron, 64, 1204–1212.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103220X/bt5605sup1.cif

e-67-o2337-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103220X/bt5605Isup2.hkl

e-67-o2337-Isup2.hkl (153KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103220X/bt5605Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES