Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2488–o2489. doi: 10.1107/S1600536811034258

(E)-2-[4-(Diethyl­amino)­styr­yl]-1-methyl­pyridinium 4-chloro­benzene­sulfonate monohydrate

Hoong-Kun Fun a,*,, Narissara Kaewmanee b, Kullapa Chanawanno b, Chatchanok Karalai b, Suchada Chantrapromma b,§
PMCID: PMC3200709  PMID: 22059040

Abstract

In the title hydrated mol­ecular salt, C18H23N2 +·C6H4ClO3S·H2O, which shows moderate biological activity against methicillin-resistant Staphylococcus aureus (MRSA), one ethyl group of the 2-[4-(diethyl­amino)­styr­yl]-1-methyl­pyridinium cation is disordered over two orientations in a 0.604 (13):0.396 (13) ratio. The main part of the cation is nearly planar with a dihedral angle of 4.50 (10)° between the pyridinium and benzene rings. In the crystal, the components are linked by O—H⋯O hydrogen bonds and C—H⋯O weak inter­actions. Aromatic π–π stacking inter­actions with centroid–centroid separations of 3.7363 (12) and 3.7490 (13) Å also occur.

Related literature

For background to and the application of quarternary ammonium compounds as disinfecta­nts, see: Brown & Skurray (2001); Chanawanno, Chantrapromma, Anantapong, Kanjana-Opas & Fun (2010); Domagk (1935); Endo et al. (1987); Fun et al. (2011); Wainwright & Kristiansen (2003). For a related structure, see: Fun et al. (2011); Kaewmanee et al. (2010). For the synthesis, see: Chanawanno, Chantrapromma, Anantapong & Kanjana-Opas (2010). For reference bond lengths, see: Allen et al. (1987).graphic file with name e-67-o2488-scheme1.jpg

Experimental

Crystal data

  • C18H23N2 +·C6H4ClO3S·H2O

  • M r = 477.00

  • Triclinic, Inline graphic

  • a = 7.2511 (3) Å

  • b = 10.2272 (4) Å

  • c = 16.7169 (7) Å

  • α = 88.441 (3)°

  • β = 80.057 (2)°

  • γ = 77.062 (2)°

  • V = 1190.00 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.53 × 0.25 × 0.04 mm

Data collection

  • Bruker APEX Duo CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.866, T max = 0.990

  • 15554 measured reflections

  • 4617 independent reflections

  • 3369 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.118

  • S = 1.04

  • 4617 reflections

  • 320 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034258/hb6382sup1.cif

e-67-o2488-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034258/hb6382Isup2.hkl

e-67-o2488-Isup2.hkl (226.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034258/hb6382Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O1 0.81 (3) 1.98 (3) 2.783 (3) 174 (3)
O1W—H1W1⋯O2i 0.87 (3) 2.13 (4) 2.977 (3) 166 (3)
C2—H2A⋯O2ii 0.93 2.52 3.374 (3) 153
C4—H4A⋯O1Wiii 0.93 2.43 3.316 (3) 158
C13—H13A⋯O3 0.93 2.59 3.495 (3) 164
C18—H18A⋯O2iv 0.96 2.49 3.426 (3) 166
C18—H18C⋯O3 0.96 2.57 3.202 (3) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial support by Prince of Songkla University is gratefully acknowledged. KC thanks the Crystal Materials Research Unit (CMRU), Prince of Songkla University for the research assistance fellowship. The authors also thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

As disinfectants, quaternary ammonium compounds (QACs) have been used for hygienic care in both medical and domestic purposes due to their low toxicity and wide-ranging antimicrobial properties for a long time (Domagk, 1935). However, the long-term use of any disinfectants will lead to the resistance phenomena of some bacterial strains that makes these disinfectants to become unpractical for real life usage. The appearance of resistant microganisms against QACs, especially Methicillin-resistant Staphylococcus aureus (MRSA), made the common QACs such as benzalkonium chloride and cetylpridinium chloride to be inadequate for MRSA treatment (Wainwright & Kristiansen, 2003; Brown & Skurray, 2001). Therefore, we decided to develop the novel pyridinium QACs which were expected to overcome this Staphylococcus-resistant phenomenon by modifying the QACs structures and to study their anti-MRSA activity. Among various chromophores employed in the research for chemotherapeutic drug design, tertiary amine seems to be an interesting group to be introduced into the structure (Endo et al., 1987). The title compound (I) was one among many pyridinium QACs synthesized in our laboratory (Chanawanno, Chantrapromma, Anantapong, Kanjana-Opas & Fun, 2010) hoping for a new antibacterial drug candidate and this compound showed moderate activity against MRSA with the MIC value of 150 mg/ml. Herein its crystal structure is reported.

The asymmetric unit of the title compound (I) (Fig. 1) consists of the C18H23N2+ cation, C6H4ClO3S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C6═C7 double bond [1.337 (3) Å]. The cation is nearly planar with the the dihedral angle between the C1–C5/N1 pyridinium and the C8–C13 benzene rings being 4.50 (10)° and the torsion angle C5–C6–C7–C8 = 177.3 (2)°. One ethyl unit of the diethylamino moiety is disordered over two orientations; the major component A and the minor component B (Fig. 1), with the refined site-occupancy ratio of 0.604 (13)/0.396 (13). The diethylamino moiety is deviated from the attached benzene ring. Its conformation can be indicated by the torsion angles C11–N2–C14–C15 = 78.6 (3)°, C11–N2–C16–C17 = -95.0 (4)° for the major component A and 107.1 (5)° for the minor component B. The cation and anion are inclined to each other as indicated by the dihedral angles between the pyridinium and benzene rings of cation, and the sulfonate substituted benzene ring being 83.96 (10) and 86.97 (11)°, respectively. The bond lengths are in normal ranges (Allen et al., 1987) and comparable with a related structures (Fun et al., 2011; Kaewmanee et al., 2010).

In the crystal packing, the cations, anions and water molecules are linked into a network by O—H..O hydrogen bonds and C—H···O weak interactions (Fig. 2 and Table 1). π···π interactions with the centroid distances of Cg1···Cg1ii = 3.7363 (12) Å and Cg1···Cg2iv = 3.7490 (13) Å were observed; Cg1 and Cg2 are the centroids of N1/C1–C5 and C8–C13 rings, respectively.

Experimental

(E)-2-(4-(diethylamino)styryl)-1-methylpyridinium iodide (compound A, 0.13 g, 0.33 mmol) was prepared by the previous method (Kaewmanee et al., 2010) and then was mixed with silver (I) 4-chlorobenzenesulfonate (Chanawanno, Chantrapromma, Anantapong & Kanjana-Opas, 2010) (0.10 g, 0.33 mmol) in methanol (100 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding an orange solid of the title compound. Orange plates of (I) were recrystallized from methanol by slow evaporation of the solvent at room temperature after a few weeks, Mp. 446-448 K.

Refinement

Water H atoms were located in difference maps and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic and CH and 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.91 Å from O1 and the deepest hole is located at 0.71 Å from S1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) showing 40% probability displacement ellipsoids. Open bonds show the minor component.

Fig. 2.

Fig. 2.

The crystal packing of the major component viewed along the b axis. The O—H···O hydrogen bonds and weak C—H···O interactions are drawn as dashed lines.

Crystal data

C18H23N2+·C6H4ClO3S·H2O Z = 2
Mr = 477.00 F(000) = 504
Triclinic, P1 Dx = 1.331 Mg m3
Hall symbol: -P 1 Melting point = 446–448 K
a = 7.2511 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.2272 (4) Å Cell parameters from 4617 reflections
c = 16.7169 (7) Å θ = 2.0–26.0°
α = 88.441 (3)° µ = 0.28 mm1
β = 80.057 (2)° T = 296 K
γ = 77.062 (2)° Plate, orange
V = 1190.00 (8) Å3 0.53 × 0.25 × 0.04 mm

Data collection

Bruker APEX Duo CCD diffractometer 4617 independent reflections
Radiation source: sealed tube 3369 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −8→8
Tmin = 0.866, Tmax = 0.990 k = −12→12
15554 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3949P] where P = (Fo2 + 2Fc2)/3
4617 reflections (Δ/σ)max = 0.001
320 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 −0.43901 (10) 1.01358 (9) 0.38727 (5) 0.0885 (3)
S1 0.36666 (7) 0.85852 (5) 0.16430 (4) 0.04745 (17)
O1 0.4113 (2) 0.98202 (16) 0.13126 (11) 0.0731 (5)
O2 0.3361 (2) 0.77323 (18) 0.10248 (11) 0.0719 (5)
O3 0.4986 (2) 0.79002 (17) 0.21510 (11) 0.0669 (5)
N1 1.0111 (2) 0.50652 (16) 0.11414 (10) 0.0417 (4)
N2 −0.1490 (3) 0.4451 (2) 0.37633 (15) 0.0787 (7)
C1 1.1941 (3) 0.4789 (2) 0.07236 (13) 0.0502 (5)
H1A 1.2646 0.5451 0.0676 0.060*
C2 1.2759 (3) 0.3571 (2) 0.03751 (14) 0.0570 (6)
H2A 1.4011 0.3395 0.0091 0.068*
C3 1.1701 (4) 0.2594 (2) 0.04490 (14) 0.0587 (6)
H3A 1.2239 0.1750 0.0215 0.070*
C4 0.9856 (3) 0.2870 (2) 0.08674 (14) 0.0521 (6)
H4A 0.9146 0.2210 0.0908 0.063*
C5 0.9018 (3) 0.4124 (2) 0.12341 (12) 0.0413 (5)
C6 0.7102 (3) 0.4465 (2) 0.17040 (13) 0.0471 (5)
H6A 0.6627 0.5346 0.1889 0.056*
C7 0.5968 (3) 0.3595 (2) 0.18895 (13) 0.0478 (5)
H7A 0.6453 0.2731 0.1678 0.057*
C8 0.4073 (3) 0.3844 (2) 0.23826 (12) 0.0430 (5)
C9 0.3068 (3) 0.2820 (2) 0.25040 (14) 0.0506 (5)
H9A 0.3640 0.1985 0.2263 0.061*
C10 0.1273 (3) 0.2995 (2) 0.29644 (14) 0.0518 (5)
H10A 0.0667 0.2279 0.3035 0.062*
C11 0.0335 (3) 0.4238 (2) 0.33314 (14) 0.0524 (6)
C12 0.1351 (3) 0.5271 (2) 0.32114 (14) 0.0530 (6)
H12A 0.0785 0.6107 0.3451 0.064*
C13 0.3153 (3) 0.5076 (2) 0.27510 (13) 0.0479 (5)
H13A 0.3774 0.5785 0.2684 0.057*
C14 −0.2465 (4) 0.3354 (3) 0.39602 (17) 0.0684 (7)
H14A −0.2227 0.2776 0.3486 0.082*
H14B −0.3838 0.3722 0.4087 0.082*
C15 −0.1841 (5) 0.2521 (3) 0.46642 (18) 0.0881 (9)
H15A −0.2525 0.1814 0.4758 0.132*
H15B −0.2114 0.3078 0.5142 0.132*
H15C −0.0487 0.2141 0.4541 0.132*
C18 0.9351 (3) 0.6428 (2) 0.14925 (15) 0.0536 (6)
H18A 1.0313 0.6947 0.1363 0.080*
H18B 0.9016 0.6372 0.2072 0.080*
H18C 0.8231 0.6852 0.1271 0.080*
C19 0.1250 (3) 0.8958 (2) 0.31157 (14) 0.0518 (6)
H19A 0.2346 0.8653 0.3346 0.062*
C20 −0.0530 (4) 0.9297 (3) 0.36085 (14) 0.0598 (6)
H20A −0.0638 0.9228 0.4170 0.072*
C21 −0.2136 (3) 0.9736 (2) 0.32577 (14) 0.0526 (6)
C22 −0.2011 (3) 0.9859 (2) 0.24371 (14) 0.0505 (5)
H22A −0.3114 1.0157 0.2210 0.061*
C23 −0.0230 (3) 0.9535 (2) 0.19461 (13) 0.0446 (5)
H23A −0.0127 0.9629 0.1386 0.053*
C24 0.1407 (3) 0.90710 (19) 0.22881 (12) 0.0400 (5)
O1W 0.7231 (3) 1.0760 (3) 0.04924 (15) 0.0793 (6)
C16A −0.2701 (8) 0.5883 (8) 0.3938 (4) 0.0633 (19) 0.604 (13)
H16A −0.2270 0.6490 0.3529 0.076* 0.604 (13)
H16B −0.4041 0.5906 0.3928 0.076* 0.604 (13)
C17A −0.2473 (8) 0.6301 (8) 0.4756 (4) 0.084 (2) 0.604 (13)
H17A −0.3215 0.7197 0.4877 0.125* 0.604 (13)
H17B −0.1143 0.6275 0.4761 0.125* 0.604 (13)
H17C −0.2914 0.5700 0.5157 0.125* 0.604 (13)
C16B −0.2117 (11) 0.5539 (10) 0.4408 (6) 0.054 (3) 0.396 (13)
H16C −0.1036 0.5870 0.4524 0.065* 0.396 (13)
H16D −0.2780 0.5229 0.4906 0.065* 0.396 (13)
C17B −0.3475 (16) 0.6607 (11) 0.3998 (6) 0.084 (3) 0.396 (13)
H17D −0.4024 0.7355 0.4363 0.126* 0.396 (13)
H17E −0.4482 0.6232 0.3860 0.126* 0.396 (13)
H17F −0.2772 0.6904 0.3513 0.126* 0.396 (13)
H2W1 0.630 (4) 1.048 (3) 0.0698 (17) 0.073 (10)*
H1W1 0.697 (5) 1.109 (4) 0.003 (2) 0.111 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0520 (4) 0.1114 (6) 0.0905 (5) −0.0164 (4) 0.0210 (4) −0.0234 (4)
S1 0.0366 (3) 0.0405 (3) 0.0620 (4) −0.0105 (2) 0.0036 (2) −0.0030 (2)
O1 0.0612 (11) 0.0534 (10) 0.0986 (14) −0.0201 (8) 0.0104 (10) 0.0177 (9)
O2 0.0571 (10) 0.0803 (12) 0.0747 (11) −0.0242 (9) 0.0155 (9) −0.0323 (10)
O3 0.0387 (9) 0.0646 (11) 0.0905 (12) 0.0004 (8) −0.0082 (8) 0.0063 (9)
N1 0.0351 (9) 0.0417 (9) 0.0464 (9) −0.0070 (7) −0.0027 (7) −0.0046 (8)
N2 0.0593 (13) 0.0663 (14) 0.1036 (18) −0.0285 (11) 0.0279 (12) −0.0248 (13)
C1 0.0364 (11) 0.0580 (14) 0.0547 (13) −0.0115 (10) −0.0021 (10) −0.0019 (11)
C2 0.0392 (12) 0.0628 (15) 0.0600 (14) −0.0004 (11) 0.0026 (10) −0.0057 (12)
C3 0.0592 (15) 0.0479 (13) 0.0583 (14) 0.0043 (12) −0.0002 (12) −0.0084 (11)
C4 0.0539 (14) 0.0397 (12) 0.0587 (13) −0.0075 (10) −0.0017 (11) −0.0023 (10)
C5 0.0395 (11) 0.0400 (11) 0.0436 (11) −0.0082 (9) −0.0054 (9) 0.0000 (9)
C6 0.0431 (12) 0.0415 (12) 0.0536 (12) −0.0091 (10) 0.0005 (10) −0.0050 (10)
C7 0.0452 (12) 0.0420 (12) 0.0539 (13) −0.0082 (10) −0.0037 (10) −0.0012 (10)
C8 0.0431 (12) 0.0425 (12) 0.0450 (11) −0.0137 (9) −0.0063 (9) 0.0016 (9)
C9 0.0491 (13) 0.0403 (12) 0.0606 (14) −0.0105 (10) −0.0028 (11) −0.0044 (10)
C10 0.0504 (13) 0.0477 (13) 0.0600 (14) −0.0215 (10) −0.0023 (11) −0.0025 (11)
C11 0.0462 (13) 0.0554 (14) 0.0549 (13) −0.0182 (11) 0.0036 (10) −0.0045 (11)
C12 0.0531 (13) 0.0450 (13) 0.0584 (13) −0.0135 (11) 0.0026 (11) −0.0099 (10)
C13 0.0497 (13) 0.0445 (12) 0.0521 (12) −0.0193 (10) −0.0041 (10) −0.0009 (10)
C14 0.0514 (14) 0.0794 (18) 0.0754 (17) −0.0292 (13) 0.0069 (13) −0.0073 (14)
C15 0.094 (2) 0.103 (2) 0.0773 (19) −0.0458 (19) −0.0084 (17) −0.0045 (18)
C18 0.0492 (13) 0.0458 (12) 0.0646 (14) −0.0124 (10) −0.0019 (11) −0.0135 (11)
C19 0.0433 (12) 0.0552 (14) 0.0551 (13) −0.0051 (10) −0.0108 (10) 0.0004 (11)
C20 0.0592 (15) 0.0694 (16) 0.0466 (13) −0.0098 (12) −0.0026 (11) −0.0033 (11)
C21 0.0419 (12) 0.0516 (13) 0.0603 (14) −0.0114 (10) 0.0056 (11) −0.0100 (11)
C22 0.0389 (12) 0.0472 (13) 0.0642 (15) −0.0049 (10) −0.0103 (11) −0.0056 (11)
C23 0.0425 (12) 0.0415 (11) 0.0488 (12) −0.0068 (9) −0.0085 (10) −0.0013 (9)
C24 0.0375 (11) 0.0299 (10) 0.0519 (12) −0.0098 (8) −0.0026 (9) −0.0027 (9)
O1W 0.0702 (14) 0.1094 (18) 0.0700 (14) −0.0476 (13) −0.0091 (11) 0.0081 (12)
C16A 0.042 (3) 0.073 (5) 0.070 (4) −0.010 (3) 0.000 (3) 0.000 (3)
C17A 0.077 (4) 0.090 (5) 0.076 (4) −0.013 (3) 0.004 (3) −0.024 (4)
C16B 0.049 (4) 0.064 (6) 0.048 (5) −0.015 (4) 0.005 (3) 0.000 (4)
C17B 0.072 (6) 0.061 (6) 0.102 (7) 0.012 (5) 0.001 (5) 0.003 (5)

Geometric parameters (Å, °)

Cl1—C21 1.743 (2) C13—H13A 0.9300
S1—O3 1.4406 (17) C14—C15 1.507 (4)
S1—O1 1.4453 (16) C14—H14A 0.9700
S1—O2 1.4466 (17) C14—H14B 0.9700
S1—C24 1.775 (2) C15—H15A 0.9600
N1—C1 1.361 (3) C15—H15B 0.9600
N1—C5 1.367 (3) C15—H15C 0.9600
N1—C18 1.477 (3) C18—H18A 0.9600
N2—C11 1.367 (3) C18—H18B 0.9600
N2—C14 1.456 (3) C18—H18C 0.9600
N2—C16B 1.508 (11) C19—C24 1.372 (3)
N2—C16A 1.537 (8) C19—C20 1.383 (3)
C1—C2 1.354 (3) C19—H19A 0.9300
C1—H1A 0.9300 C20—C21 1.375 (3)
C2—C3 1.381 (3) C20—H20A 0.9300
C2—H2A 0.9300 C21—C22 1.363 (3)
C3—C4 1.370 (3) C22—C23 1.382 (3)
C3—H3A 0.9300 C22—H22A 0.9300
C4—C5 1.398 (3) C23—C24 1.389 (3)
C4—H4A 0.9300 C23—H23A 0.9300
C5—C6 1.446 (3) O1W—H2W1 0.81 (3)
C6—C7 1.337 (3) O1W—H1W1 0.86 (4)
C6—H6A 0.9300 C16A—C17A 1.490 (11)
C7—C8 1.448 (3) C16A—H16A 0.9700
C7—H7A 0.9300 C16A—H16B 0.9700
C8—C13 1.391 (3) C17A—H17A 0.9600
C8—C9 1.397 (3) C17A—H17B 0.9600
C9—C10 1.370 (3) C17A—H17C 0.9600
C9—H9A 0.9300 C16B—C17B 1.531 (15)
C10—C11 1.402 (3) C16B—H16C 0.9700
C10—H10A 0.9300 C16B—H16D 0.9700
C11—C12 1.408 (3) C17B—H17D 0.9600
C12—C13 1.372 (3) C17B—H17E 0.9600
C12—H12A 0.9300 C17B—H17F 0.9600
O3—S1—O1 113.45 (11) N2—C14—H14A 108.8
O3—S1—O2 113.60 (11) C15—C14—H14A 108.8
O1—S1—O2 112.13 (12) N2—C14—H14B 108.8
O3—S1—C24 106.07 (10) C15—C14—H14B 108.8
O1—S1—C24 105.37 (10) H14A—C14—H14B 107.7
O2—S1—C24 105.31 (9) C14—C15—H15A 109.5
C1—N1—C5 121.61 (18) C14—C15—H15B 109.5
C1—N1—C18 117.11 (18) H15A—C15—H15B 109.5
C5—N1—C18 121.27 (17) C14—C15—H15C 109.5
C11—N2—C14 121.6 (2) H15A—C15—H15C 109.5
C11—N2—C16B 118.8 (3) H15B—C15—H15C 109.5
C14—N2—C16B 111.8 (3) N1—C18—H18A 109.5
C11—N2—C16A 120.6 (3) N1—C18—H18B 109.5
C14—N2—C16A 117.1 (3) H18A—C18—H18B 109.5
C2—C1—N1 121.5 (2) N1—C18—H18C 109.5
C2—C1—H1A 119.3 H18A—C18—H18C 109.5
N1—C1—H1A 119.3 H18B—C18—H18C 109.5
C1—C2—C3 118.8 (2) C24—C19—C20 120.3 (2)
C1—C2—H2A 120.6 C24—C19—H19A 119.9
C3—C2—H2A 120.6 C20—C19—H19A 119.9
C4—C3—C2 119.9 (2) C21—C20—C19 119.1 (2)
C4—C3—H3A 120.1 C21—C20—H20A 120.4
C2—C3—H3A 120.1 C19—C20—H20A 120.4
C3—C4—C5 121.3 (2) C22—C21—C20 121.5 (2)
C3—C4—H4A 119.3 C22—C21—Cl1 119.02 (18)
C5—C4—H4A 119.3 C20—C21—Cl1 119.46 (19)
N1—C5—C4 116.93 (19) C21—C22—C23 119.3 (2)
N1—C5—C6 119.05 (18) C21—C22—H22A 120.4
C4—C5—C6 124.0 (2) C23—C22—H22A 120.4
C7—C6—C5 124.14 (19) C22—C23—C24 120.0 (2)
C7—C6—H6A 117.9 C22—C23—H23A 120.0
C5—C6—H6A 117.9 C24—C23—H23A 120.0
C6—C7—C8 127.4 (2) C19—C24—C23 119.73 (19)
C6—C7—H7A 116.3 C19—C24—S1 120.97 (16)
C8—C7—H7A 116.3 C23—C24—S1 119.28 (16)
C13—C8—C9 116.57 (19) H2W1—O1W—H1W1 105 (3)
C13—C8—C7 123.52 (19) C17A—C16A—N2 108.1 (7)
C9—C8—C7 119.92 (19) C17A—C16A—H16A 110.1
C10—C9—C8 122.6 (2) N2—C16A—H16A 110.1
C10—C9—H9A 118.7 C17A—C16A—H16B 110.1
C8—C9—H9A 118.7 N2—C16A—H16B 110.1
C9—C10—C11 121.0 (2) H16A—C16A—H16B 108.4
C9—C10—H10A 119.5 N2—C16B—C17B 101.3 (8)
C11—C10—H10A 119.5 N2—C16B—H16C 111.5
N2—C11—C10 121.9 (2) C17B—C16B—H16C 111.5
N2—C11—C12 121.6 (2) N2—C16B—H16D 111.5
C10—C11—C12 116.4 (2) C17B—C16B—H16D 111.5
C13—C12—C11 121.8 (2) H16C—C16B—H16D 109.3
C13—C12—H12A 119.1 C16B—C17B—H17D 109.5
C11—C12—H12A 119.1 C16B—C17B—H17E 109.5
C12—C13—C8 121.6 (2) H17D—C17B—H17E 109.5
C12—C13—H13A 119.2 C16B—C17B—H17F 109.5
C8—C13—H13A 119.2 H17D—C17B—H17F 109.5
N2—C14—C15 113.7 (2) H17E—C17B—H17F 109.5
C5—N1—C1—C2 0.5 (3) C11—C12—C13—C8 −0.4 (3)
C18—N1—C1—C2 −179.5 (2) C9—C8—C13—C12 0.1 (3)
N1—C1—C2—C3 0.0 (3) C7—C8—C13—C12 179.7 (2)
C1—C2—C3—C4 0.2 (4) C11—N2—C14—C15 78.6 (3)
C2—C3—C4—C5 −0.9 (3) C16B—N2—C14—C15 −70.2 (5)
C1—N1—C5—C4 −1.1 (3) C16A—N2—C14—C15 −111.0 (4)
C18—N1—C5—C4 178.96 (19) C24—C19—C20—C21 0.5 (4)
C1—N1—C5—C6 178.28 (18) C19—C20—C21—C22 −0.7 (4)
C18—N1—C5—C6 −1.7 (3) C19—C20—C21—Cl1 178.81 (18)
C3—C4—C5—N1 1.3 (3) C20—C21—C22—C23 −0.1 (3)
C3—C4—C5—C6 −178.1 (2) Cl1—C21—C22—C23 −179.58 (17)
N1—C5—C6—C7 −174.3 (2) C21—C22—C23—C24 1.0 (3)
C4—C5—C6—C7 5.0 (3) C20—C19—C24—C23 0.4 (3)
C5—C6—C7—C8 177.3 (2) C20—C19—C24—S1 −177.73 (18)
C6—C7—C8—C13 −0.7 (4) C22—C23—C24—C19 −1.2 (3)
C6—C7—C8—C9 178.9 (2) C22—C23—C24—S1 177.00 (15)
C13—C8—C9—C10 −0.4 (3) O3—S1—C24—C19 9.9 (2)
C7—C8—C9—C10 180.0 (2) O1—S1—C24—C19 −110.69 (19)
C8—C9—C10—C11 0.9 (4) O2—S1—C24—C19 130.60 (19)
C14—N2—C11—C10 8.5 (4) O3—S1—C24—C23 −168.25 (16)
C16B—N2—C11—C10 155.2 (4) O1—S1—C24—C23 71.18 (18)
C16A—N2—C11—C10 −161.5 (3) O2—S1—C24—C23 −47.53 (19)
C14—N2—C11—C12 −173.5 (2) C11—N2—C16A—C17A −95.0 (4)
C16B—N2—C11—C12 −26.7 (5) C14—N2—C16A—C17A 94.5 (4)
C16A—N2—C11—C12 16.5 (5) C16B—N2—C16A—C17A 3.5 (5)
C9—C10—C11—N2 177.1 (2) C11—N2—C16B—C17B 107.1 (5)
C9—C10—C11—C12 −1.1 (3) C14—N2—C16B—C17B −103.1 (5)
N2—C11—C12—C13 −177.3 (2) C16A—N2—C16B—C17B 3.4 (5)
C10—C11—C12—C13 0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H2W1···O1 0.81 (3) 1.98 (3) 2.783 (3) 174 (3)
O1W—H1W1···O2i 0.87 (3) 2.13 (4) 2.977 (3) 166 (3)
C2—H2A···O2ii 0.93 2.52 3.374 (3) 153
C4—H4A···O1Wiii 0.93 2.43 3.316 (3) 158
C13—H13A···O3 0.93 2.59 3.495 (3) 164
C18—H18A···O2iv 0.96 2.49 3.426 (3) 166
C18—H18C···O3 0.96 2.57 3.202 (3) 123

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+1, −z; (iii) x, y−1, z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6382).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Brown, M. H. & Skurray, R. A. (2001). J. Mol. Microbiol. Biotechnol. 3, 163–170. [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chanawanno, K., Chantrapromma, S., Anantapong, T. & Kanjana-Opas, A. (2010). Lat. Am. J. Pharm 29, 1166–1170.
  5. Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208. [DOI] [PubMed]
  6. Domagk, G. (1935). Dtsch Med. Wochenschr. 24, 829–832.
  7. Endo, Y., Tani, T. & Kodama, K. (1987). Appl. Environ. Microbiol. 53, 2050–2055. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o593–o594. [DOI] [PMC free article] [PubMed]
  9. Kaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639–o2640. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wainwright, M. & Kristiansen, J. E. (2003). Int. J. Antimicrob. Agents, 22, 479–486. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034258/hb6382sup1.cif

e-67-o2488-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034258/hb6382Isup2.hkl

e-67-o2488-Isup2.hkl (226.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034258/hb6382Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES