Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1984 Aug 10;12(15):6259–6276. doi: 10.1093/nar/12.15.6259

1H-NMR study of the interaction of daunomycin with B-DNA helices of methylated oligodeoxynucleotides.

S Tran-Dinh, J A Cavaillès, M Hervé, J M Neumann, A Garnier, T Huynh-Dinh, B Langlois d'Estaintot, J Igolen
PMCID: PMC320071  PMID: 6473108

Abstract

The interaction of daunomycin with B-DNA double helices of several methylated deoxynucleotides, d(C-G-m5C-G), d(m5C-G-C-G), d(C-G-m5C-G-C-G) and d(m5C-G-C-G-m5C-G) in solution was investigated by 1H-NMR spectroscopy at 500 MHz. At low temperature (t less than 20 degrees C for the tetramer and t less than 40 degrees C for the hexamers), several daunomycin-DNA complexes were observed in slow exchange with the drug-free DNA duplexes. The presence of daunomycin in a self-complementary double helix cancels the conformational symmetry of the two strands; the proton signals can split into several others owing to the difference between free and intercalated duplexes and to the many possible intercalation sites in a duplex (three for a tetramer, five for an hexamer). A model relating the chemical shifts of splitted proton signals to the various intercalated duplex conformations was given. The results show that one daunomycin molecule is associated with one duplex and that it can enter any intercalation site with equal probability; no side-effects were observed even for very short helices (of a tetramer). In the case of d(C-G-m5C-G) the association constant and the dissociation and association rates of the intercalated complex were evaluated.

Full text

PDF
6259

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bresloff J. L., Crothers D. M. Equilibrium studies of ethidium--polynucleotide interactions. Biochemistry. 1981 Jun 9;20(12):3547–3553. doi: 10.1021/bi00515a038. [DOI] [PubMed] [Google Scholar]
  2. Cavailles J. A., Neumann J. M., Taboury J., Langlois d'Estaintot B., Huynh-Dinh T., Igolen J., Tran-Dinh S. B,Z conformations and mechanism of the Z-B-coil transitions of the self-complementary deoxy-hexanucleotide d(C-G-m5C-G-C-G) by 1H-NMR and CD spectroscopy. J Biomol Struct Dyn. 1984 Jun;1(6):1347–1371. doi: 10.1080/07391102.1984.10507525. [DOI] [PubMed] [Google Scholar]
  3. Chaires J. B., Dattagupta N., Crothers D. M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on interaction of daunomycin with deoxyribonucleic acid. Biochemistry. 1982 Aug 17;21(17):3933–3940. doi: 10.1021/bi00260a005. [DOI] [PubMed] [Google Scholar]
  4. Dalgleish D. G., Fey G., Kersten W. Circular dichroism studies of complexes of the antibiotics daunomycin, nogalamycin, chromomycin, and mithramycin with DNA. Biopolymers. 1974;13(9):1757–1766. doi: 10.1002/bip.1974.360130909. [DOI] [PubMed] [Google Scholar]
  5. Dearing A., Weiner P., Kollman P. A. Molecular mechanical studies of proflavine and acridine orange intercalation. Nucleic Acids Res. 1981 Mar 25;9(6):1483–1497. doi: 10.1093/nar/9.6.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feigon J., Wang A. H., van der Marel G. A., Van Boom J. H., Rich A. A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution. Nucleic Acids Res. 1984 Jan 25;12(2):1243–1263. doi: 10.1093/nar/12.2.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fritzsche H., Triebel H., Chaires J. B., Dattagupta N., Crothers D. M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: geometry of intercalation of iremycin and daunomycin. Biochemistry. 1982 Aug 17;21(17):3940–3946. doi: 10.1021/bi00260a006. [DOI] [PubMed] [Google Scholar]
  8. Gaugain B., Markovits J., Le Pecq J. B., Roques B. P. Hydrogen bonding in deoxyribonucleic acid base recognition. 1. Proton nuclear magnetic resonance studies of dinucleotide-acridine alkylamide complexes. Biochemistry. 1981 May 26;20(11):3035–3042. doi: 10.1021/bi00514a008. [DOI] [PubMed] [Google Scholar]
  9. Markovits J., Gaugain B., Barbet J., Roques B. P., Le Pecq J. B. Hydrogen bonding in deoxyribonucleic acid base recognition. 2. Deoxyribonucleic acid binding studies of acridine alkylamides. Biochemistry. 1981 May 26;20(11):3042–3048. doi: 10.1021/bi00514a009. [DOI] [PubMed] [Google Scholar]
  10. Marky L. A., Snyder J. G., Remeta D. P., Breslauer K. J. Thermodynamics of drug-DNA interactions. J Biomol Struct Dyn. 1983 Oct;1(2):487–507. doi: 10.1080/07391102.1983.10507457. [DOI] [PubMed] [Google Scholar]
  11. Nuss M. E., James T. L., Apple M. A., Kollman P. A. An NMR study of the interaction of daunomycin with dinucleotides and dinucleoside phosphates. Biochim Biophys Acta. 1980 Aug 26;609(1):136–147. doi: 10.1016/0005-2787(80)90207-5. [DOI] [PubMed] [Google Scholar]
  12. Patel D. J., Canuel L. L. Anthracycline antitumor antibiotic nucleic-acid interactions. Structural aspects of the daunomycin poly(dA-dT) complex in solution. Eur J Biochem. 1978 Oct;90(2):247–254. doi: 10.1111/j.1432-1033.1978.tb12597.x. [DOI] [PubMed] [Google Scholar]
  13. Patel D. J., Canuel L. L. Steroid diamine-nucleic acid interactions: partial insertion of dipyrandium between unstacked base pairs of the poly(dA-dT) duplex in solution. Proc Natl Acad Sci U S A. 1979 Jan;76(1):24–28. doi: 10.1073/pnas.76.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patel D. J. Helix-coil transition of the dG-dC-dG-dC self-complementary duplex and complex formation with daunomycin in solution. Biopolymers. 1979 Mar;18(3):553–569. doi: 10.1002/bip.1979.360180307. [DOI] [PubMed] [Google Scholar]
  15. Phillips D. R., Roberts G. C. Proton nuclear magnetic resonance study of the self-complementary hexanucleotide d(pTpA)3 and its interaction with daunomycin. Biochemistry. 1980 Oct 14;19(21):4795–4801. doi: 10.1021/bi00562a013. [DOI] [PubMed] [Google Scholar]
  16. Quigley G. J., Wang A. H., Ughetto G., van der Marel G., van Boom J. H., Rich A. Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG). Proc Natl Acad Sci U S A. 1980 Dec;77(12):7204–7208. doi: 10.1073/pnas.77.12.7204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tran-Dinh S., Neumann J. M., Huynh-Dinh T., Allard P., Lallemand J. Y., Igolen J. DNA fragment conformations IV - Helix-coil transition and conformation of d-CCATGG in aqueous solution by 1H-NMR spectroscopy. Nucleic Acids Res. 1982 Sep 11;10(17):5319–5332. doi: 10.1093/nar/10.17.5319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tran-Dinh S., Neumann J. M., Huynh-Dinh T., Genissel B., Igolen J., Simonnot G. DNA fragment conformations. 1H-NMR studies of helix-coil transition, conformations and dynamic structures of the self-complementary deoxyhexanucleotide d(A-C-A-T-G-T) in aqueous solution. Eur J Biochem. 1982 Jun;124(3):415–425. [PubMed] [Google Scholar]
  19. Tran-Dinh S., Taboury J., Neumann J. M., Huynh-Dinh T., Genissel B., Gouyette C., Igolen J. B and Z double helical conformations of d-(m5C-G-C-G-m5C-G) in aqueous solution. FEBS Lett. 1983 Apr 18;154(2):407–410. doi: 10.1016/0014-5793(83)80192-6. [DOI] [PubMed] [Google Scholar]
  20. Tran-Dinh S., Taboury J., Neumann J. M., Huynh-Dinh T., Genissel B., Langlois d'Estaintot B., Igolen J. 1H NMR and circular dichroism studies of the B and Z conformations of the self-complementary deoxyhexanucleotide d(m5C-G-C-G-m5-C-G): mechanism of the Z-B-coil transitions. Biochemistry. 1984 Mar 27;23(7):1362–1371. doi: 10.1021/bi00302a005. [DOI] [PubMed] [Google Scholar]
  21. Waring M. J. DNA modification and cancer. Annu Rev Biochem. 1981;50:159–192. doi: 10.1146/annurev.bi.50.070181.001111. [DOI] [PubMed] [Google Scholar]
  22. Young P. R., Kallenbach N. R. Site exclusion and sequence specificity in binding of 9-aminoacridine to the deoxytetranucleotide dpApGpCpT. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6453–6457. doi: 10.1073/pnas.77.11.6453. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES