Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 2;67(Pt 9):o2216–o2217. doi: 10.1107/S1600536811030133

Methyl 2,2′-dimethyl-4′-[2-(methyl­sulfan­yl)eth­yl]-1,3-dioxo-2,3-dihydro-1H,4′H-spiro­[isoquinoline-4,5′-oxazole]-4′-carboxyl­ate

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Chengmei Huang b, Haitao Yu b
PMCID: PMC3200713  PMID: 22058900

Abstract

In the isoquinoline ring system of the title mol­ecule, C18H20N2O5S, the fused N-heterocyclic ring is distorted towards a half-boat conformation. The methyl formate moiety is disordered over two sets of sites with refined occupancies of 0.882 (5) and 0.118 (5). In the crystal, mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds into one-dimensional chains along [010].

Related literature

For general background to and the biological activity of isoquinoline- and oxazole-containing compounds, see: Yu et al. (2010); Huang et al. (2011); Harris et al. (2005); Vintonyak et al. (2010); Badillo et al. (2010, 2011); Wang et al. (2010); Nair et al. (2002). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2011a ,b ,c ,d ).graphic file with name e-67-o2216-scheme1.jpg

Experimental

Crystal data

  • C18H20N2O5S

  • M r = 376.42

  • Monoclinic, Inline graphic

  • a = 15.0052 (15) Å

  • b = 8.4548 (8) Å

  • c = 15.4915 (15) Å

  • β = 114.621 (2)°

  • V = 1786.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.18 × 0.17 × 0.14 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.963, T max = 0.971

  • 14571 measured reflections

  • 4063 independent reflections

  • 3343 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.120

  • S = 1.03

  • 4063 reflections

  • 251 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030133/lh5290sup1.cif

e-67-o2216-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030133/lh5290Isup2.hkl

e-67-o2216-Isup2.hkl (199.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030133/lh5290Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18C⋯O2i 0.96 2.49 3.436 (2) 167

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for a Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Program for New Century Excellent Talents in Universities (grant No. NCET-08-0271) of China is acknowledged.

supplementary crystallographic information

Comment

Photocycloaddition of isoquinoline-1,3,4-trione combined with following transformation of the photocycloadducts has become facile method to build various scaffold containing isoquinoline moiety (Yu et al., 2010; Huang et al., 2011). Oxazoles can be used to inhibit the activity of malignant tumors (Harris et al., 2005). Spirocyclic oxindoles have emerged as attractive synthetic targets because of their prevalence in numerous natural products and important biological activity (Badillo et al., 2010; Vintonyak et al., 2010). Among them, the synthesis of spirooxindole oxazoles is of great intrest (Badillo et al., 2011; Wang et al., 2010; Nair et al., 2002). Many bioactive natural products especially alkaloids contain an isoquinoline or oxazole ring. It is necessary to develop methodologies to construct such moieties. The title compound which was derived from isoquinoline-1,3,4-trione and an oxazole and may have potential use in biochemical and pharmaceutical fields.

In the racemic title compound, Fig. 1, atoms C9 and C11 are the chiral centers. The isoquinoline ring system (N1/C1-C9) is not completely planar, the N-heterocyclic ring (N1/C1-C3/C8/C9) being distorted towards a half-boat conformation with atom C9 deviating by 0.213 (2) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.3237 (18) Å, Θ = 67.0 (3)° and φ = 102.1 (3)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to related structures (Fun et al., 2011a, b, c, d). The methyl formate moiety (O4/O5/C15/C16) is disordered over two positions with refined site-occupancies of 0.882 (5) and 0.118 (5).

In the crystal, Fig. 2, molecules are linked via intermolecular C18–H18C···O2i hydrogen bonds (Table 1) into infinite one-dimensional chains along [010].

Experimental

The title compound was the main product from the acid-catalyzed transformation of the photocyclo adduct of isoquinoline-1,3,4-trione and 4-(2-(methylthio)ethyl)-5-methoxy-2-methyloxazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:4) as eluents. X-ray quality crystals of the title compound were obtained from slow evaporation of an acetone and petroleum ether solution (1:5) of the title compound (m.p. 440-142 K).

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 - 0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The highest residual electron density peak is located at 0.76 Å from C2 and the deepest hole is located at 0.70 Å from S1. The same Uij parameters were used for atom pair C15B/C16B. The methyl formate moiety (O4/O5/C15/C16) is disordered over two positions with refined site-occupancies of 0.882 (5) : 0.118 (5). All minor disordered components were refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. The minor component of disorder is shown as open bonds.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only the major disorder component is shown.

Crystal data

C18H20N2O5S F(000) = 792
Mr = 376.42 Dx = 1.399 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4051 reflections
a = 15.0052 (15) Å θ = 2.8–32.2°
b = 8.4548 (8) Å µ = 0.21 mm1
c = 15.4915 (15) Å T = 100 K
β = 114.621 (2)° Block, colourless
V = 1786.7 (3) Å3 0.18 × 0.17 × 0.14 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 4063 independent reflections
Radiation source: fine-focus sealed tube 3343 reflections with I > 2σ(I)
graphite Rint = 0.046
φ and ω scans θmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −19→19
Tmin = 0.963, Tmax = 0.971 k = −10→10
14571 measured reflections l = −20→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.5509P] where P = (Fo2 + 2Fc2)/3
4063 reflections (Δ/σ)max = 0.001
251 parameters Δρmax = 0.37 e Å3
5 restraints Δρmin = −0.32 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.27696 (3) 1.10762 (5) 0.32691 (3) 0.02485 (13)
O1 0.33441 (10) 0.50297 (14) 0.39092 (8) 0.0279 (3)
O2 0.46168 (9) 0.36107 (18) 0.18390 (11) 0.0383 (3)
O3 0.14782 (8) 0.46617 (13) 0.26111 (8) 0.0221 (3)
N1 0.39944 (10) 0.44834 (16) 0.28567 (10) 0.0217 (3)
N2 0.10538 (10) 0.70860 (16) 0.19482 (10) 0.0235 (3)
C1 0.32154 (12) 0.47773 (18) 0.30951 (11) 0.0194 (3)
C2 0.38950 (12) 0.38490 (19) 0.19925 (12) 0.0231 (3)
C3 0.28965 (11) 0.33921 (18) 0.13157 (11) 0.0185 (3)
C4 0.27876 (13) 0.24490 (19) 0.05343 (12) 0.0244 (4)
H4A 0.3335 0.2156 0.0435 0.029*
C5 0.18662 (14) 0.1955 (2) −0.00886 (12) 0.0295 (4)
H5A 0.1792 0.1324 −0.0606 0.035*
C6 0.10523 (14) 0.2401 (2) 0.00594 (13) 0.0306 (4)
H6A 0.0433 0.2056 −0.0357 0.037*
C7 0.11511 (12) 0.3360 (2) 0.08231 (12) 0.0248 (4)
H7A 0.0599 0.3668 0.0910 0.030*
C8 0.20750 (11) 0.38568 (17) 0.14568 (11) 0.0168 (3)
C9 0.22153 (11) 0.49560 (18) 0.22694 (11) 0.0168 (3)
C10 0.08495 (13) 0.5926 (2) 0.23464 (13) 0.0257 (4)
C11 0.20146 (11) 0.67886 (18) 0.19522 (11) 0.0176 (3)
C12 0.27506 (12) 0.79601 (18) 0.26518 (11) 0.0201 (3)
H12A 0.2747 0.7840 0.3273 0.024*
H12B 0.3405 0.7719 0.2710 0.024*
C13 0.24935 (14) 0.96755 (19) 0.23154 (12) 0.0244 (4)
H13A 0.1799 0.9736 0.1903 0.029*
H13B 0.2851 0.9971 0.1944 0.029*
C14 0.40732 (16) 1.0840 (2) 0.38860 (16) 0.0436 (5)
H14A 0.4320 1.1541 0.4422 0.065*
H14B 0.4376 1.1086 0.3465 0.065*
H14C 0.4221 0.9767 0.4101 0.065*
O4A 0.2865 (2) 0.6950 (4) 0.0984 (2) 0.0223 (6) 0.882 (5)
O5A 0.1227 (3) 0.7245 (6) 0.0253 (2) 0.0350 (8) 0.882 (5)
C15A 0.19637 (16) 0.7028 (3) 0.09603 (17) 0.0182 (5) 0.882 (5)
C16A 0.29113 (18) 0.7026 (3) 0.00803 (15) 0.0350 (6) 0.882 (5)
H16A 0.3583 0.6962 0.0169 0.053* 0.882 (5)
H16B 0.2633 0.8007 −0.0225 0.053* 0.882 (5)
H16C 0.2549 0.6160 −0.0308 0.053* 0.882 (5)
O4B 0.1389 (17) 0.715 (4) 0.0255 (17) 0.018 (5)* 0.118 (5)
O5B 0.3045 (17) 0.707 (4) 0.114 (2) 0.028 (7)* 0.118 (5)
C15B 0.2218 (18) 0.697 (5) 0.104 (2) 0.045 (5)* 0.118 (5)
C16B 0.1512 (14) 0.732 (2) −0.0598 (13) 0.045 (5)* 0.118 (5)
H16D 0.0883 0.7433 −0.1121 0.067* 0.118 (5)
H16E 0.1834 0.6394 −0.0695 0.067* 0.118 (5)
H16F 0.1905 0.8234 −0.0556 0.067* 0.118 (5)
C17 −0.00079 (17) 0.5767 (3) 0.2584 (2) 0.0491 (6)
H17A −0.0411 0.6694 0.2377 0.074*
H17B 0.0215 0.5650 0.3258 0.074*
H17C −0.0383 0.4853 0.2270 0.074*
C18 0.49909 (13) 0.4745 (2) 0.35923 (15) 0.0379 (5)
H18A 0.5443 0.4075 0.3472 0.057*
H18B 0.5008 0.4500 0.4204 0.057*
H18C 0.5172 0.5832 0.3581 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0334 (2) 0.0158 (2) 0.0250 (2) 0.00124 (15) 0.01191 (19) −0.00212 (15)
O1 0.0415 (7) 0.0212 (6) 0.0162 (6) 0.0016 (5) 0.0073 (5) −0.0005 (4)
O2 0.0252 (7) 0.0440 (8) 0.0519 (9) −0.0037 (6) 0.0221 (7) −0.0092 (7)
O3 0.0268 (6) 0.0174 (6) 0.0292 (6) 0.0042 (4) 0.0187 (5) 0.0061 (5)
N1 0.0173 (6) 0.0205 (7) 0.0218 (7) −0.0020 (5) 0.0025 (6) 0.0003 (5)
N2 0.0232 (7) 0.0200 (7) 0.0289 (8) 0.0031 (5) 0.0125 (6) 0.0038 (6)
C1 0.0255 (8) 0.0123 (7) 0.0182 (8) −0.0006 (6) 0.0070 (7) 0.0008 (6)
C2 0.0227 (8) 0.0197 (8) 0.0286 (9) 0.0000 (6) 0.0122 (7) 0.0012 (6)
C3 0.0226 (8) 0.0161 (7) 0.0172 (7) 0.0009 (6) 0.0088 (6) 0.0021 (6)
C4 0.0341 (9) 0.0205 (8) 0.0222 (8) 0.0049 (7) 0.0153 (7) 0.0009 (6)
C5 0.0424 (10) 0.0229 (9) 0.0185 (8) 0.0027 (7) 0.0080 (8) −0.0040 (6)
C6 0.0290 (9) 0.0268 (9) 0.0242 (9) −0.0017 (7) −0.0009 (8) −0.0044 (7)
C7 0.0204 (8) 0.0228 (8) 0.0265 (9) 0.0011 (6) 0.0052 (7) −0.0005 (7)
C8 0.0197 (7) 0.0137 (7) 0.0159 (7) 0.0007 (5) 0.0064 (6) 0.0017 (5)
C9 0.0202 (7) 0.0145 (7) 0.0174 (7) −0.0001 (5) 0.0095 (6) 0.0002 (5)
C10 0.0273 (9) 0.0205 (8) 0.0329 (9) 0.0050 (6) 0.0162 (8) 0.0025 (7)
C11 0.0229 (8) 0.0135 (7) 0.0167 (7) 0.0015 (6) 0.0085 (6) 0.0022 (6)
C12 0.0297 (8) 0.0148 (7) 0.0153 (7) −0.0006 (6) 0.0087 (7) −0.0001 (6)
C13 0.0356 (9) 0.0159 (8) 0.0193 (8) −0.0006 (6) 0.0091 (7) 0.0009 (6)
C14 0.0371 (11) 0.0313 (10) 0.0445 (12) 0.0036 (8) −0.0007 (10) −0.0062 (9)
O4A 0.0278 (14) 0.0245 (10) 0.0164 (12) −0.0063 (10) 0.0109 (10) −0.0028 (9)
O5A 0.0325 (15) 0.0456 (15) 0.0204 (10) 0.0042 (14) 0.0045 (10) 0.0055 (7)
C15A 0.0253 (12) 0.0130 (9) 0.0157 (10) −0.0023 (10) 0.0080 (10) 0.0001 (7)
C16A 0.0484 (14) 0.0411 (13) 0.0268 (11) −0.0108 (10) 0.0269 (10) −0.0040 (9)
C17 0.0464 (12) 0.0363 (11) 0.0867 (18) 0.0122 (9) 0.0496 (13) 0.0174 (11)
C18 0.0222 (9) 0.0357 (11) 0.0391 (11) −0.0067 (7) −0.0038 (8) −0.0004 (9)

Geometric parameters (Å, °)

S1—C14 1.795 (2) C11—C15B 1.57 (3)
S1—C13 1.8019 (17) C12—C13 1.535 (2)
O1—C1 1.213 (2) C12—H12A 0.9700
O2—C2 1.218 (2) C12—H12B 0.9700
O3—C10 1.3706 (19) C13—H13A 0.9700
O3—C9 1.4328 (18) C13—H13B 0.9700
N1—C1 1.387 (2) C14—H14A 0.9600
N1—C2 1.391 (2) C14—H14B 0.9600
N1—C18 1.471 (2) C14—H14C 0.9600
N2—C10 1.263 (2) O4A—C15A 1.340 (3)
N2—C11 1.461 (2) O4A—C16A 1.431 (4)
C1—C9 1.520 (2) O5A—C15A 1.203 (4)
C2—C3 1.478 (2) C16A—H16A 0.9600
C3—C8 1.395 (2) C16A—H16B 0.9600
C3—C4 1.401 (2) C16A—H16C 0.9600
C4—C5 1.380 (3) O4B—C15B 1.336 (18)
C4—H4A 0.9300 O4B—C16B 1.416 (19)
C5—C6 1.386 (3) O5B—C15B 1.189 (19)
C5—H5A 0.9300 C16B—H16D 0.9600
C6—C7 1.390 (3) C16B—H16E 0.9600
C6—H6A 0.9300 C16B—H16F 0.9600
C7—C8 1.389 (2) C17—H17A 0.9600
C7—H7A 0.9300 C17—H17B 0.9600
C8—C9 1.507 (2) C17—H17C 0.9600
C9—C11 1.615 (2) C18—H18A 0.9600
C10—C17 1.484 (3) C18—H18B 0.9600
C11—C15A 1.520 (3) C18—H18C 0.9600
C11—C12 1.542 (2)
C14—S1—C13 100.99 (9) C13—C12—H12A 109.4
C10—O3—C9 107.16 (12) C11—C12—H12A 109.4
C1—N1—C2 124.12 (13) C13—C12—H12B 109.4
C1—N1—C18 117.65 (15) C11—C12—H12B 109.4
C2—N1—C18 118.05 (15) H12A—C12—H12B 108.0
C10—N2—C11 107.72 (13) C12—C13—S1 113.78 (11)
O1—C1—N1 121.45 (15) C12—C13—H13A 108.8
O1—C1—C9 122.08 (15) S1—C13—H13A 108.8
N1—C1—C9 116.08 (13) C12—C13—H13B 108.8
O2—C2—N1 120.26 (16) S1—C13—H13B 108.8
O2—C2—C3 122.63 (16) H13A—C13—H13B 107.7
N1—C2—C3 116.99 (14) S1—C14—H14A 109.5
C8—C3—C4 120.20 (15) S1—C14—H14B 109.5
C8—C3—C2 121.07 (14) H14A—C14—H14B 109.5
C4—C3—C2 118.72 (14) S1—C14—H14C 109.5
C5—C4—C3 119.91 (16) H14A—C14—H14C 109.5
C5—C4—H4A 120.0 H14B—C14—H14C 109.5
C3—C4—H4A 120.0 C15A—O4A—C16A 115.5 (3)
C4—C5—C6 119.80 (16) O5A—C15A—O4A 124.6 (3)
C4—C5—H5A 120.1 O5A—C15A—C11 125.5 (2)
C6—C5—H5A 120.1 O4A—C15A—C11 109.9 (2)
C5—C6—C7 120.72 (16) O4A—C16A—H16A 109.5
C5—C6—H6A 119.6 O4A—C16A—H16B 109.5
C7—C6—H6A 119.6 H16A—C16A—H16B 109.5
C8—C7—C6 119.95 (16) O4A—C16A—H16C 109.5
C8—C7—H7A 120.0 H16A—C16A—H16C 109.5
C6—C7—H7A 120.0 H16B—C16A—H16C 109.5
C7—C8—C3 119.41 (15) C15B—O4B—C16B 115 (2)
C7—C8—C9 121.87 (14) O5B—C15B—O4B 129 (3)
C3—C8—C9 118.65 (14) O5B—C15B—C11 118 (2)
O3—C9—C8 109.92 (12) O4B—C15B—C11 112 (2)
O3—C9—C1 108.37 (12) O4B—C16B—H16D 109.5
C8—C9—C1 112.76 (12) O4B—C16B—H16E 109.5
O3—C9—C11 101.78 (11) H16D—C16B—H16E 109.5
C8—C9—C11 113.19 (12) O4B—C16B—H16F 109.5
C1—C9—C11 110.17 (12) H16D—C16B—H16F 109.5
N2—C10—O3 118.36 (15) H16E—C16B—H16F 109.5
N2—C10—C17 127.13 (16) C10—C17—H17A 109.5
O3—C10—C17 114.50 (15) C10—C17—H17B 109.5
N2—C11—C15A 109.81 (14) H17A—C17—H17B 109.5
N2—C11—C12 108.00 (13) C10—C17—H17C 109.5
C15A—C11—C12 110.16 (15) H17A—C17—H17C 109.5
N2—C11—C15B 122.6 (9) H17B—C17—H17C 109.5
C12—C11—C15B 102.6 (12) N1—C18—H18A 109.5
N2—C11—C9 103.00 (12) N1—C18—H18B 109.5
C15A—C11—C9 111.08 (15) H18A—C18—H18B 109.5
C12—C11—C9 114.46 (12) N1—C18—H18C 109.5
C15B—C11—C9 106.7 (15) H18A—C18—H18C 109.5
C13—C12—C11 111.29 (13) H18B—C18—H18C 109.5
C2—N1—C1—O1 165.16 (15) C10—N2—C11—C15A 129.83 (18)
C18—N1—C1—O1 −9.9 (2) C10—N2—C11—C12 −110.02 (15)
C2—N1—C1—C9 −21.8 (2) C10—N2—C11—C15B 131.3 (18)
C18—N1—C1—C9 163.11 (14) C10—N2—C11—C9 11.44 (17)
C1—N1—C2—O2 −179.30 (16) O3—C9—C11—N2 −13.71 (14)
C18—N1—C2—O2 −4.2 (2) C8—C9—C11—N2 104.20 (14)
C1—N1—C2—C3 −3.2 (2) C1—C9—C11—N2 −128.52 (13)
C18—N1—C2—C3 171.80 (15) O3—C9—C11—C15A −131.21 (14)
O2—C2—C3—C8 −171.88 (16) C8—C9—C11—C15A −13.30 (19)
N1—C2—C3—C8 12.2 (2) C1—C9—C11—C15A 113.98 (16)
O2—C2—C3—C4 9.5 (3) O3—C9—C11—C12 103.26 (14)
N1—C2—C3—C4 −166.48 (14) C8—C9—C11—C12 −138.83 (14)
C8—C3—C4—C5 −1.1 (2) C1—C9—C11—C12 −11.55 (17)
C2—C3—C4—C5 177.51 (16) O3—C9—C11—C15B −144.0 (9)
C3—C4—C5—C6 0.3 (3) C8—C9—C11—C15B −26.1 (9)
C4—C5—C6—C7 0.8 (3) C1—C9—C11—C15B 101.2 (9)
C5—C6—C7—C8 −1.1 (3) N2—C11—C12—C13 −64.30 (16)
C6—C7—C8—C3 0.3 (2) C15A—C11—C12—C13 55.63 (19)
C6—C7—C8—C9 177.18 (15) C15B—C11—C12—C13 66.5 (13)
C4—C3—C8—C7 0.8 (2) C9—C11—C12—C13 −178.36 (13)
C2—C3—C8—C7 −177.81 (15) C11—C12—C13—S1 145.74 (12)
C4—C3—C8—C9 −176.15 (14) C14—S1—C13—C12 61.63 (15)
C2—C3—C8—C9 5.2 (2) C16A—O4A—C15A—O5A −4.5 (5)
C10—O3—C9—C8 −108.91 (14) C16A—O4A—C15A—C11 175.0 (2)
C10—O3—C9—C1 127.45 (13) N2—C11—C15A—O5A −8.1 (4)
C10—O3—C9—C11 11.32 (15) C12—C11—C15A—O5A −126.9 (4)
C7—C8—C9—O3 33.2 (2) C15B—C11—C15A—O5A 178 (7)
C3—C8—C9—O3 −149.93 (13) C9—C11—C15A—O5A 105.2 (4)
C7—C8—C9—C1 154.22 (15) N2—C11—C15A—O4A 172.3 (2)
C3—C8—C9—C1 −28.89 (19) C12—C11—C15A—O4A 53.5 (3)
C7—C8—C9—C11 −79.87 (18) C15B—C11—C15A—O4A −2(7)
C3—C8—C9—C11 97.02 (16) C9—C11—C15A—O4A −74.4 (3)
O1—C1—C9—O3 −28.3 (2) C16B—O4B—C15B—O5B 7(7)
N1—C1—C9—O3 158.75 (13) C16B—O4B—C15B—C11 −180 (2)
O1—C1—C9—C8 −150.20 (15) N2—C11—C15B—O5B 163 (3)
N1—C1—C9—C8 36.83 (18) C15A—C11—C15B—O5B 169 (11)
O1—C1—C9—C11 82.28 (18) C12—C11—C15B—O5B 42 (4)
N1—C1—C9—C11 −90.69 (15) C9—C11—C15B—O5B −79 (4)
C11—N2—C10—O3 −4.9 (2) N2—C11—C15B—O4B −11 (4)
C11—N2—C10—C17 174.1 (2) C15A—C11—C15B—O4B −5(5)
C9—O3—C10—N2 −5.1 (2) C12—C11—C15B—O4B −132 (3)
C9—O3—C10—C17 175.80 (17) C9—C11—C15B—O4B 107 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C18—H18C···O2i 0.96 2.49 3.436 (2) 167.

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5290).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Badillo, J. J., Arevalo, G. E., Fettinger, J. C. & Franz, A. K. (2011). Org. Lett. 13, 418–421. [DOI] [PubMed]
  3. Badillo, J. J., Hanhan, N. V. & Franz, A. K. (2010). Curr. Opin. Drug Discov. Dev. 13, 758–766. [PubMed]
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271–o1272. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273–o1274. [DOI] [PMC free article] [PubMed]
  9. Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011c). Acta Cryst. E67, o1311–o1312. [DOI] [PMC free article] [PubMed]
  10. Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011d). Acta Cryst. E67, o1340–o1341. [DOI] [PMC free article] [PubMed]
  11. Harris, P. A., Cheung, M., Hunter, R. N., Brown, M. L., Veal, J. M., Nolte, R. T., Wang, L., Liu, W., Crosby, R. M., Johnson, J. H., Epperly, A. H., Kumar, R., Luttrell, D. K. & Stafford, J. A. (2005). J. Med. Chem. 48, 1610–1619. [DOI] [PubMed]
  12. Huang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629–3631. [DOI] [PubMed]
  13. Nair, V., Sethumadhavan, D., Nair, S. M., Viji, S. & Rath, P. (2002). Tetrahedron, 58, 3003–3007.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Vintonyak, V., Warburg, K., Kruse, H., Grimme, S., Hübel, K., Rauh, D. & Waldmann, H. (2010). Angew. Chem. Int. Ed. 49, 5902–5905. [DOI] [PubMed]
  17. Wang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757–7768. [DOI] [PubMed]
  18. Yu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030133/lh5290sup1.cif

e-67-o2216-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030133/lh5290Isup2.hkl

e-67-o2216-Isup2.hkl (199.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030133/lh5290Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES