Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2289. doi: 10.1107/S1600536811031618

(E)-6-Amino-1,3-dimethyl-5-[(pyridin-2-yl­methyl­idene)amino]­pyrimidine-2,4(1H,3H)-dione

Irvin Booysen a, Thulani Hlela a, Muhammed Ismail a, Thomas Gerber b, Eric Hosten b, Richard Betz b,*
PMCID: PMC3200715  PMID: 22065567

Abstract

In the title compound, C12H13N5O2, a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å). The N=C bond is E-configured. Intra­cyclic angles in the pyridine moiety cover the range 117.6 (2)–124.1 (2)°. Intra- and inter­molecular N—H⋯N and N—H⋯O hydrogen bonds are observed in the crystal structure, as are intra- and inter­molecular C—H⋯O contacts which, in total, connect the mol­ecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14) Å is between the two different types of six-membered rings.

Related literature

For the crystal structures of two polymorphs of 6-amino-1,3-dimethyl-5-[(E-2-(methyl­sulfan­yl)benzyl­idene­amino]­pyrim­idine-2,4(1H,3H)-dione, see: Booysen et al. (2011a ,b ). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975). For general information about the chelate effect in coordination chemistry, see: Gade (1998).graphic file with name e-67-o2289-scheme1.jpg

Experimental

Crystal data

  • C12H13N5O2

  • M r = 259.27

  • Orthorhombic, Inline graphic

  • a = 26.5036 (8) Å

  • b = 28.9987 (14) Å

  • c = 6.2193 (1) Å

  • V = 4780.0 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.27 × 0.14 × 0.06 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 11316 measured reflections

  • 1620 independent reflections

  • 1171 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.079

  • S = 0.94

  • 1620 reflections

  • 182 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031618/lh5299sup1.cif

e-67-o2289-sup1.cif (17.2KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811031618/lh5299Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031618/lh5299Isup3.hkl

e-67-o2289-Isup3.hkl (80.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031618/lh5299Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H71⋯N5i 0.93 (3) 2.08 (3) 2.928 (3) 151 (3)
N4—H72⋯N3 0.84 (2) 2.25 (2) 2.661 (3) 110.2 (18)
N4—H72⋯O2ii 0.84 (2) 2.54 (2) 3.108 (3) 125.8 (19)
C7—H7⋯O2 0.95 2.17 2.847 (3) 127
C11—H11⋯O1iii 0.95 2.54 3.313 (3) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Mr David Neale-Shutte for helpful discussions.

supplementary crystallographic information

Comment

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade 1998). Combining different sets of donor atoms in one chelate ligand molecule, a probe for testing and accomodating metal centers of different Lewis acidities is at hand. To enable comparative studies with envisioned coordination compounds, we determined the crystal structure of the title compound. Two crystal structures of 6-amino-1,3-dimethyl-5-[(E-2- (methylsulfanyl)benzylideneamino]pyrimidine-2,4(1H,3H)-dione are apparent in the literature (Booysen et al., 2011a; Booysen et al., 2011b).

The molecule is a Schiff-base composed of a pyridyl moiety and a 6-amino-1,3- dimethylpyrimidine-2,4(1H,3H)-dione moiety. The C=N double-bond is (E)-configured. A conformation analysis of the non-aromatic six-membered ring (Cremer & Pople, 1975) fails due to the low puckering amplitude (τ = 2.9 °; r.m.s. of fitted non-hydrogen atoms – including the exocyclic substituents – = 0.0503 Å). Intracyclic angles in the pyridyl moiety cover a range from 117.6 (2)–124.1 (2) ° with the smallest angle found on the nitrogen atom and the largest angle found on the unsubstituted carbon atom in ortho position to the nitrogen atom. The least-squares planes defined by the respective atoms of the six-membered heterocycles intersect at an angle of 8.11 (12) °. The amino group is almost planar. The plane defined by its atoms and the least-squares plane defined by the atoms of its six-membered carrier ring enclose an angle of 9.56(2.54) ° (Fig. 1).

In the crystal structure, hydrogen bonds of N–H···N type as well as N–H···O type are observed. These are intra- as well as intermolecular and, in the case of N–H···N hydrogen bonds, involve only the nitrogen atom of the aromatic system and the Schiff base's double bonded nitrogen atom as acceptor. The intramolecular hydrogen bond shows bifurcation involving an oxygen atom. Apart from these classical hydrogen bonds, intra- as well as intermolecular C–H···O contacts can be observed whose range falls by more than 0.5 Å (in the former case) and by almost 0.2 Å (in the latter case) below the sum of van-der-Waals radii of the atoms participating. While the intramolecular C–H···O contact is apparent between the vinylic hydrogen atom and the neighbouring oxygen atom, the intermolecular C–H···O contacts are supported by the C–H group in para position to the Schiff-base substituent on the aromatic system and the keto group's oxygen atom that is not involved in the intramolecular C–H···O contacts. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is S(5)C11(6)C11(8) on the unitary level while a description of the C–H···O contacts necessitates a S(6)C11(12) descriptor on the same level. In total, the molecules are connected to a three-dimensional network. The shortest intercentroid distance between two centers of gravity was measured at 3.5831 (14) Å while the shortest intercentroid distance between two aromatic systems was found at 5.2956 (14) Å. (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

Experimental

Equimolar amounts of picolinaldehyde (1.00 g, 9.36 mmol) and 5,6-diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (1.59 g) in anhydrous methanol (50 cm3) were refluxed for 3 h. The reaction mixture was allowed to cool to room temperature. An orange precipitate was isolated, which was recrystallized from anhydrous acetonitrile to give orange crystals. The crystals were filtered and dried under vacuum.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [0 - 1 0]. Blue dashed lines indicate clasical intermolecular hydrogen bonds, red dashed lines indicate classical intramolecular hydrogen bonds, green dashed lines intermolecular C–H···O contacts and yellow dashed lines intramolecular C–H···O contacts. Symmetry operators: i -x + 1/4, y - 1/4, z + 7/4; iix - 1/4, -y + 1/4, z + 3/4; iiix - 1/4, -y + 1/4, z - 1/4; ivx + 1/4, -y + 1/4, z - 3/4; v -x + 1/4, y + 1/4, z - 7/4.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [0 0 - 1] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C12H13N5O2 F(000) = 2176
Mr = 259.27 Dx = 1.441 Mg m3
Orthorhombic, Fdd2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 2610 reflections
a = 26.5036 (8) Å θ = 2.8–25.2°
b = 28.9987 (14) Å µ = 0.10 mm1
c = 6.2193 (1) Å T = 200 K
V = 4780.0 (3) Å3 Platelet, red
Z = 16 0.27 × 0.14 × 0.06 mm

Data collection

Bruker APEXII CCD diffractometer 1171 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.049
graphite θmax = 28.3°, θmin = 2.1°
φ and ω scans h = −35→32
11316 measured reflections k = −38→38
1620 independent reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0422P)2] where P = (Fo2 + 2Fc2)/3
1620 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.17 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (1312 pairs) have been merged and the item was removed from the CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.15951 (6) 0.02666 (6) 0.6362 (3) 0.0368 (5)
O2 0.24640 (6) 0.08960 (6) 0.0779 (2) 0.0332 (4)
N1 0.11534 (7) 0.06900 (7) 0.3925 (3) 0.0284 (5)
N2 0.20212 (7) 0.05684 (7) 0.3521 (3) 0.0267 (5)
N3 0.15107 (7) 0.12779 (6) −0.0955 (3) 0.0246 (4)
N4 0.06933 (8) 0.10885 (8) 0.1366 (4) 0.0347 (5)
H71 0.0405 (11) 0.0991 (9) 0.207 (5) 0.056 (9)*
H72 0.0709 (8) 0.1246 (8) 0.023 (4) 0.021 (7)*
N5 0.21612 (7) 0.17411 (7) −0.5455 (3) 0.0290 (5)
C1 0.15777 (9) 0.10106 (8) 0.0864 (4) 0.0247 (5)
C2 0.11379 (9) 0.09303 (8) 0.2032 (4) 0.0250 (5)
C3 0.15934 (9) 0.04947 (8) 0.4708 (4) 0.0269 (6)
C4 0.20500 (8) 0.08359 (8) 0.1627 (4) 0.0245 (5)
C5 0.07022 (10) 0.06475 (12) 0.5270 (5) 0.0497 (8)
H5A 0.0523 0.0943 0.5301 0.075*
H5B 0.0801 0.0562 0.6735 0.075*
H5C 0.0480 0.0409 0.4675 0.075*
C6 0.24849 (9) 0.03686 (9) 0.4392 (4) 0.0360 (6)
H6A 0.2572 0.0524 0.5741 0.054*
H6B 0.2760 0.0409 0.3354 0.054*
H6C 0.2433 0.0039 0.4665 0.054*
C7 0.18654 (9) 0.13865 (8) −0.2257 (4) 0.0274 (6)
H7 0.2197 0.1272 −0.2021 0.033*
C8 0.17658 (9) 0.16845 (8) −0.4101 (3) 0.0242 (5)
C9 0.13029 (9) 0.18992 (9) −0.4462 (4) 0.0321 (6)
H9 0.1032 0.1861 −0.3479 0.039*
C10 0.12463 (10) 0.21673 (8) −0.6268 (4) 0.0366 (6)
H10 0.0935 0.2319 −0.6536 0.044*
C11 0.16425 (10) 0.22156 (9) −0.7690 (4) 0.0393 (7)
H11 0.1607 0.2392 −0.8968 0.047*
C12 0.20894 (10) 0.20008 (9) −0.7199 (4) 0.0362 (7)
H12 0.2365 0.2039 −0.8161 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0386 (10) 0.0401 (10) 0.0316 (10) 0.0016 (8) 0.0004 (8) 0.0116 (10)
O2 0.0224 (9) 0.0446 (11) 0.0328 (9) 0.0016 (8) 0.0037 (7) 0.0052 (9)
N1 0.0219 (11) 0.0349 (12) 0.0284 (10) 0.0010 (8) 0.0044 (9) 0.0071 (10)
N2 0.0239 (10) 0.0303 (11) 0.0261 (10) 0.0031 (8) −0.0012 (8) 0.0042 (9)
N3 0.0214 (10) 0.0288 (11) 0.0237 (10) −0.0008 (8) 0.0020 (9) −0.0003 (10)
N4 0.0223 (12) 0.0480 (14) 0.0340 (12) −0.0001 (10) 0.0035 (10) 0.0164 (12)
N5 0.0261 (11) 0.0345 (12) 0.0263 (10) −0.0002 (9) 0.0031 (8) 0.0030 (10)
C1 0.0237 (12) 0.0276 (13) 0.0229 (11) −0.0003 (9) 0.0002 (10) −0.0009 (11)
C2 0.0239 (13) 0.0261 (12) 0.0251 (12) 0.0020 (9) −0.0016 (10) 0.0002 (11)
C3 0.0253 (14) 0.0273 (13) 0.0281 (13) −0.0017 (10) 0.0004 (10) 0.0013 (12)
C4 0.0239 (13) 0.0249 (12) 0.0248 (12) 0.0003 (9) −0.0003 (10) −0.0029 (11)
C5 0.0290 (15) 0.078 (2) 0.0423 (16) 0.0069 (15) 0.0112 (13) 0.0267 (16)
C6 0.0270 (13) 0.0416 (15) 0.0393 (15) 0.0055 (11) −0.0034 (11) 0.0085 (13)
C7 0.0237 (13) 0.0321 (14) 0.0264 (12) 0.0014 (10) 0.0002 (11) 0.0000 (11)
C8 0.0224 (11) 0.0272 (13) 0.0230 (11) −0.0021 (10) 0.0004 (10) −0.0026 (10)
C9 0.0264 (14) 0.0350 (14) 0.0349 (14) 0.0036 (11) 0.0006 (11) −0.0011 (12)
C10 0.0311 (14) 0.0306 (14) 0.0480 (17) 0.0049 (11) −0.0141 (13) −0.0018 (14)
C11 0.0456 (18) 0.0349 (14) 0.0373 (15) −0.0021 (12) −0.0090 (13) 0.0100 (13)
C12 0.0395 (16) 0.0392 (16) 0.0298 (14) −0.0032 (13) 0.0050 (12) 0.0073 (12)

Geometric parameters (Å, °)

O1—C3 1.223 (3) C5—H5A 0.9800
O2—C4 1.230 (3) C5—H5B 0.9800
N1—C2 1.368 (3) C5—H5C 0.9800
N1—C3 1.385 (3) C6—H6A 0.9800
N1—C5 1.465 (3) C6—H6B 0.9800
N2—C3 1.370 (3) C6—H6C 0.9800
N2—C4 1.413 (3) C7—C8 1.460 (3)
N2—C6 1.463 (3) C7—H7 0.9500
N3—C7 1.280 (3) C8—C9 1.394 (3)
N3—C1 1.383 (3) C9—C10 1.374 (4)
N4—C2 1.330 (3) C9—H9 0.9500
N4—H71 0.93 (3) C10—C11 1.380 (4)
N4—H72 0.84 (2) C10—H10 0.9500
N5—C12 1.334 (3) C11—C12 1.373 (4)
N5—C8 1.354 (3) C11—H11 0.9500
C1—C2 1.393 (3) C12—H12 0.9500
C1—C4 1.431 (3)
C2—N1—C3 122.4 (2) H5A—C5—H5C 109.5
C2—N1—C5 120.6 (2) H5B—C5—H5C 109.5
C3—N1—C5 116.9 (2) N2—C6—H6A 109.5
C3—N2—C4 125.46 (19) N2—C6—H6B 109.5
C3—N2—C6 115.73 (19) H6A—C6—H6B 109.5
C4—N2—C6 118.74 (19) N2—C6—H6C 109.5
C7—N3—C1 124.1 (2) H6A—C6—H6C 109.5
C2—N4—H71 118.6 (18) H6B—C6—H6C 109.5
C2—N4—H72 113.8 (16) N3—C7—C8 120.6 (2)
H71—N4—H72 127 (2) N3—C7—H7 119.7
C12—N5—C8 117.6 (2) C8—C7—H7 119.7
N3—C1—C2 114.4 (2) N5—C8—C9 121.8 (2)
N3—C1—C4 125.6 (2) N5—C8—C7 114.8 (2)
C2—C1—C4 120.0 (2) C9—C8—C7 123.4 (2)
N4—C2—N1 118.0 (2) C10—C9—C8 118.7 (2)
N4—C2—C1 121.4 (2) C10—C9—H9 120.6
N1—C2—C1 120.6 (2) C8—C9—H9 120.6
O1—C3—N2 122.3 (2) C9—C10—C11 119.9 (2)
O1—C3—N1 121.4 (2) C9—C10—H10 120.1
N2—C3—N1 116.3 (2) C11—C10—H10 120.1
O2—C4—N2 118.9 (2) C12—C11—C10 117.9 (3)
O2—C4—C1 126.0 (2) C12—C11—H11 121.0
N2—C4—C1 115.1 (2) C10—C11—H11 121.0
N1—C5—H5A 109.5 N5—C12—C11 124.1 (2)
N1—C5—H5B 109.5 N5—C12—H12 118.0
H5A—C5—H5B 109.5 C11—C12—H12 118.0
N1—C5—H5C 109.5
C7—N3—C1—C2 −179.2 (2) C6—N2—C4—O2 −0.6 (3)
C7—N3—C1—C4 3.4 (4) C3—N2—C4—C1 −4.6 (3)
C3—N1—C2—N4 177.2 (2) C6—N2—C4—C1 178.8 (2)
C5—N1—C2—N4 −5.7 (3) N3—C1—C4—O2 −0.3 (4)
C3—N1—C2—C1 −3.6 (3) C2—C1—C4—O2 −177.6 (2)
C5—N1—C2—C1 173.4 (2) N3—C1—C4—N2 −179.7 (2)
N3—C1—C2—N4 2.3 (3) C2—C1—C4—N2 3.0 (3)
C4—C1—C2—N4 179.9 (2) C1—N3—C7—C8 −177.8 (2)
N3—C1—C2—N1 −176.8 (2) C12—N5—C8—C9 −2.0 (3)
C4—C1—C2—N1 0.8 (3) C12—N5—C8—C7 178.4 (2)
C4—N2—C3—O1 −178.5 (2) N3—C7—C8—N5 −174.6 (2)
C6—N2—C3—O1 −1.8 (3) N3—C7—C8—C9 5.8 (3)
C4—N2—C3—N1 2.1 (3) N5—C8—C9—C10 1.4 (4)
C6—N2—C3—N1 178.7 (2) C7—C8—C9—C10 −179.0 (2)
C2—N1—C3—O1 −177.2 (2) C8—C9—C10—C11 0.6 (4)
C5—N1—C3—O1 5.6 (4) C9—C10—C11—C12 −1.9 (4)
C2—N1—C3—N2 2.2 (3) C8—N5—C12—C11 0.6 (4)
C5—N1—C3—N2 −174.9 (2) C10—C11—C12—N5 1.4 (4)
C3—N2—C4—O2 176.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H71···N5i 0.93 (3) 2.08 (3) 2.928 (3) 151 (3)
N4—H72···N3 0.84 (2) 2.25 (2) 2.661 (3) 110.2 (18)
N4—H72···O2ii 0.84 (2) 2.54 (2) 3.108 (3) 125.8 (19)
C7—H7···O2 0.95 2.17 2.847 (3) 127.
C11—H11···O1iii 0.95 2.54 3.313 (3) 138.

Symmetry codes: (i) x−1/4, −y+1/4, z+3/4; (ii) x−1/4, −y+1/4, z−1/4; (iii) −x+1/4, y+1/4, z−7/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5299).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011a). Acta Cryst. E67, o1592. [DOI] [PMC free article] [PubMed]
  3. Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011b). Acta Cryst. E67, o2025–o2026. [DOI] [PMC free article] [PubMed]
  4. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031618/lh5299sup1.cif

e-67-o2289-sup1.cif (17.2KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811031618/lh5299Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031618/lh5299Isup3.hkl

e-67-o2289-Isup3.hkl (80.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031618/lh5299Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES