Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2464. doi: 10.1107/S1600536811034295

N-Cyclo­propyl-N-[2-(2,4-difluoro­phen­yl)-2-hy­droxy-1-(1H-1,2,4-triazol-1-yl)prop­yl]-2-(5-methyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-yl)acetamide dichloro­methane 0.62-solvate

Nan Wang a, Huan-Mei Guo b, Gui-Ge Hou c, Xin-Yue Hu a, Qing-Guo Meng a,*
PMCID: PMC3200716  PMID: 22059025

Abstract

In the title compound, C21H22F2N6O4·0.62CH2Cl2, the difluoro-substituted benzene ring forms dihedral angles of 54.6 (3)° with the mean plane of the thymine ring and 50.9 (2)° with the triazole ring. The dihedral angle between the thymine and triazole rings is 7.4 (3)°. In the crystal, inter­molecular N—H⋯N and O—H⋯O hydrogen bonds link the main mol­ecules into chains along [10Inline graphic]. The CH2Cl2 solvent mol­ecule was refined as partial occupancy over two sets of sites with refined occupancies of 0.308 (9) and 0.310 (8).

Related literature

For the applications of azole and triazole compounds as anti­fungal agents, see: Singh (2001); Richardson (2005); Hobson (2003); Slavin et al. (2002); Wingard & Leather (2004); Fridkin & Jarvis (1996); Gallis et al. (1990); Sheehan et al. (1999); Denning (2002); Aoyama et al. (1984); Lamb et al. (1999).graphic file with name e-67-o2464-scheme1.jpg

Experimental

Crystal data

  • C21H22F2N6O4·0.62CH2Cl2

  • M r = 512.93

  • Triclinic, Inline graphic

  • a = 8.474 (2) Å

  • b = 12.464 (3) Å

  • c = 13.410 (4) Å

  • α = 62.942 (4)°

  • β = 73.187 (4)°

  • γ = 83.746 (4)°

  • V = 1207.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.30 × 0.16 × 0.14 mm

Data collection

  • Bruker SMART APEX diffractometer

  • 6058 measured reflections

  • 4162 independent reflections

  • 3053 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.092

  • wR(F 2) = 0.209

  • S = 1.16

  • 4162 reflections

  • 356 parameters

  • 42 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034295/lh5302sup1.cif

e-67-o2464-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034295/lh5302Isup2.hkl

e-67-o2464-Isup2.hkl (203.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034295/lh5302Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯N2i 0.80 2.11 2.893 (5) 167
O1—H1A⋯O2ii 0.82 2.13 2.903 (4) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Mr Lian-dong Liu (College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China) for his invaluable support in the X-ray data collection. The authors also thank the National Natural Science Foundation of China for a research grant (No. 81072534).

supplementary crystallographic information

Comment

In recent years, fungal infections are prevalent diseases from which a large proportion of the human population suffers (Singh, 2001; Richardson, 2005; Hobson, 2003; Slavin et al., 2002). The increased emergence of both superficial and systemic fungal infections has led to the massive increase in the rate of mortality, especially in immunocompromised individuals i.e. those suffering from tuberculosis, cancer or AIDS (Wingard & Leather, 2004; Fridkin & Jarvis, 1996). There are very few antifungal agents that can be used for life-threatening fungal infections. Several clinical drugs, such as amphotericin B,5-fluorocytosine, azoles (such as fluconazole and itraconazole) and echinocandins (such as caspofungin and micafungin) have been developed to reduce the impact of fungal diseases (Gallis et al., 1990; Sheehan et al., 1999; Denning, 2002). Among those, azoles, especially triazole antifungal agents, are used widely and efficiently. For over a decade, azoles have been a mainstay of the antifungal armamentarium. They act by competitive inhibition of the lanosterol 1410 which is the key enzyme in sterol biosynthesis of fungi (Aoyama et al., 1984). Selective inhibition of CYP51 would cause depletion of ergosterol and accumulation of lanosterol and other 14-methyl sterols resulting in the growth inhibition of fungal cells (Lamb et al., 1999). We have attempted to prepare some potential antifungal agents with improved activity and broader spectrum, by sythesizing a series of 1-(1H-1,2,4-triazole-1-yl)-(2,4-difluorophenyl)-3-[N-n-alkyl-N-(1-thyminyl)acetyl]-2-propanol compounds. Herein, we report the crystal structure of the title compound (I).

The molecular structure of the title compound is shown in Fig. 1. The difluoro-substituted benzene ring forms dihedral angles of 54.6 (3)° with the mean plane of the thymine ring and 50.9 (2)° with the triazole ring. The dihedral angle between the thymine and triazole rings is 7.4 (3)°. In the crystal, intermolecular N—H···N and O—H···O hydrogen bonds link the main molecules into one-dimensional chains (Fig. 2) along [101].

Experimental

The synthesis of thymin-1-yl acetic acid: To a solution of thymine (30.00 g, 237.89 mmol) in water (150 ml) was added potassium hydroxide (51.25 g, 903.79 mmol). The solution was heated to 313 K, and then bromoacetic acid (49.58 g, 356.83 mmol) was added dropwise. The resulting solution was allowed to stir for 2 h at the same temperature. The solution was then brought to pH 5 with 36% HCl at 273 K. The white precipitate was filtered off and discarded. Then the filtrate was brought to pH 1 with 36% HCl. Solid was filtered off and dried and obtained in 83.5% yield, m.p 528–530 K.

The synthesis of the title compound: To a solution of 1-(1H-1,2,4-triazole)-2,2-[oxiranyl-(2,4-difluorophenyl)]ethane mesylate (16.75 g, 50 mmol) in ethanol (240 ml) was added triethylamine (16 ml, 110 mmol) and cyclopropylamine (6.93 ml, 100 mmol). The resulting solution was raised to 318 K and stirred for 10 h at the same temperature. Once concentrated to light yellow oil under vacuum, the residue was taken off with ethyl acetate and was treated with 1 M HCl. The aqueous phase was then brought to pH 8 with sodium carbonate and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. A light yellow oil was obtained in 67.6% yield. A solution of the title compound (9.2 mg,0.02 mmol) in dichloromethane and methanol (4 ml, 1:1, v/v) was kept at room temperature. Upon slow evaporation of the solvent over about 10 d, colourless block-shaped crystals suitable for X-ray measurements were obtained.

Refinement

All H atoms were placed in idealized positions and treated as riding,with C—H = 0.97 (CH2), 0.96 (CH3), 0.93 Å (CHaromatic), 0.98 Å (CHtertiary alkyl), N—H = 0.80 Å, O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(N, CH and CH2), Uiso(H) = 1.5Ueq(OH and CH3). The CH2Cl2 solvent molecule was refined as partial occupancy over two sets of sites with refined occupancies of 0.308 (9) and 0.310 (8). The precision of this structure is lower than normal and this may be the result of the presence of the disordered solvent in the lattice.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing displacement ellipsoids with 30% probability. The solvent molecule is not shown.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound. Dashed lines indicate hydrogen bonds. Only H atoms involved in hydrogen bonds are shown. The solvent molecules are not shown.

Crystal data

C21H22F2N6O4·0.62CH2Cl2 Z = 2
Mr = 512.93 F(000) = 532.2
Triclinic, P1 Dx = 1.411 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.474 (2) Å Cell parameters from 1529 reflections
b = 12.464 (3) Å θ = 2.5–24.6°
c = 13.410 (4) Å µ = 0.24 mm1
α = 62.942 (4)° T = 298 K
β = 73.187 (4)° Block, colourless
γ = 83.746 (4)° 0.30 × 0.16 × 0.14 mm
V = 1207.1 (6) Å3

Data collection

Bruker SMART APEX diffractometer 3053 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
graphite θmax = 25.0°, θmin = 1.8°
φ and ω scans h = −10→8
6058 measured reflections k = −14→11
4162 independent reflections l = −15→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0687P)2 + 1.6778P] where P = (Fo2 + 2Fc2)/3
4162 reflections (Δ/σ)max < 0.001
356 parameters Δρmax = 0.50 e Å3
42 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.4568 (7) 0.7140 (5) 1.3061 (5) 0.0602 (15)
H1 0.3778 0.7522 1.3425 0.072*
C2 0.5856 (6) 0.5787 (4) 1.2724 (4) 0.0416 (11)
H2 0.6213 0.5044 1.2752 0.050*
C3 0.7947 (5) 0.7116 (4) 1.0885 (3) 0.0320 (10)
H3A 0.8887 0.6649 1.1106 0.038*
H3B 0.8256 0.7963 1.0532 0.038*
C4 0.7508 (5) 0.6834 (4) 0.9990 (4) 0.0296 (9)
C5 0.5887 (5) 0.7388 (4) 0.9760 (3) 0.0291 (9)
C6 0.5620 (5) 0.8613 (4) 0.9364 (4) 0.0331 (10)
C7 0.4170 (6) 0.9142 (4) 0.9172 (4) 0.0481 (12)
H7 0.4040 0.9968 0.8914 0.058*
C8 0.2910 (6) 0.8396 (5) 0.9378 (5) 0.0537 (14)
C9 0.3077 (6) 0.7182 (4) 0.9764 (4) 0.0476 (12)
H9 0.2210 0.6695 0.9894 0.057*
C10 0.4563 (5) 0.6694 (4) 0.9955 (4) 0.0349 (10)
H10 0.4680 0.5866 1.0227 0.042*
C11 0.8951 (5) 0.7280 (4) 0.8885 (4) 0.0333 (10)
H11A 0.9135 0.8136 0.8603 0.040*
H11B 0.9940 0.6873 0.9079 0.040*
C12 0.7806 (6) 0.7963 (4) 0.7168 (4) 0.0421 (11)
H12 0.6619 0.7806 0.7371 0.051*
C13 0.8329 (10) 0.9254 (5) 0.6618 (5) 0.078 (2)
H13A 0.7476 0.9850 0.6514 0.094*
H13B 0.9264 0.9450 0.6791 0.094*
C14 0.8650 (8) 0.8592 (5) 0.5897 (4) 0.0644 (16)
H14A 0.9779 0.8385 0.5633 0.077*
H14B 0.7991 0.8785 0.5357 0.077*
C15 0.9161 (5) 0.6029 (4) 0.7912 (4) 0.0315 (10)
C16 0.8534 (5) 0.5732 (4) 0.7112 (4) 0.0375 (11)
H16A 0.7435 0.5370 0.7513 0.045*
H16B 0.8459 0.6471 0.6432 0.045*
C17 0.9241 (6) 0.3704 (4) 0.7248 (4) 0.0440 (12)
H17 0.8292 0.3407 0.7861 0.053*
C18 1.0177 (6) 0.2925 (4) 0.6907 (4) 0.0468 (12)
C19 0.9756 (9) 0.1617 (5) 0.7452 (6) 0.086 (2)
H19A 0.8814 0.1425 0.8114 0.129*
H19B 1.0675 0.1158 0.7697 0.129*
H19C 0.9508 0.1422 0.6898 0.129*
C20 1.1630 (6) 0.3403 (4) 0.5940 (4) 0.0430 (11)
C21 1.1004 (5) 0.5404 (4) 0.5851 (4) 0.0376 (10)
F1 0.6869 (3) 0.9347 (2) 0.9153 (3) 0.0508 (7)
F2 0.1460 (4) 0.8888 (3) 0.9206 (4) 0.0897 (12)
N1 0.5731 (5) 0.7741 (4) 1.2121 (4) 0.0512 (11)
N2 0.4584 (5) 0.5937 (4) 1.3470 (3) 0.0525 (11)
N3 0.6572 (4) 0.6839 (3) 1.1920 (3) 0.0322 (8)
N4 0.8680 (4) 0.7077 (3) 0.7957 (3) 0.0298 (8)
N5 0.9609 (4) 0.4908 (3) 0.6742 (3) 0.0351 (9)
N6 1.1926 (4) 0.4609 (3) 0.5494 (3) 0.0411 (9)
H6 1.2754 0.4935 0.5005 0.049*
O1 0.7269 (3) 0.5572 (2) 1.0449 (3) 0.0351 (7)
H1A 0.8101 0.5229 1.0622 0.053*
O2 0.9993 (4) 0.5299 (3) 0.8517 (3) 0.0455 (8)
O3 1.1376 (4) 0.6464 (3) 0.5414 (3) 0.0573 (10)
O4 1.2549 (5) 0.2801 (3) 0.5518 (3) 0.0655 (11)
C1A 0.332 (3) 0.799 (2) 0.626 (4) 0.104 (10) 0.308 (9)
H1AA 0.2307 0.7586 0.6801 0.125* 0.308 (9)
H1AB 0.3205 0.8252 0.5492 0.125* 0.308 (9)
Cl1 0.4739 (16) 0.7045 (11) 0.6375 (13) 0.193 (7) 0.308 (9)
Cl2 0.350 (3) 0.920 (2) 0.633 (2) 0.371 (15) 0.308 (9)
C1B 0.401 (4) 0.803 (2) 0.5671 (15) 0.103 (9) 0.310 (8)
H1BA 0.3007 0.7941 0.5521 0.123* 0.310 (8)
H1BB 0.4728 0.7448 0.5497 0.123* 0.310 (8)
Cl1' 0.3513 (16) 0.7336 (13) 0.7053 (12) 0.177 (6) 0.310 (8)
Cl2' 0.477 (3) 0.9237 (19) 0.453 (2) 0.340 (13) 0.310 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.051 (3) 0.067 (4) 0.056 (4) 0.010 (3) 0.005 (3) −0.036 (3)
C2 0.045 (3) 0.046 (3) 0.030 (2) 0.003 (2) −0.003 (2) −0.017 (2)
C3 0.028 (2) 0.041 (2) 0.032 (2) 0.0028 (18) −0.0105 (18) −0.019 (2)
C4 0.027 (2) 0.030 (2) 0.032 (2) 0.0003 (17) −0.0059 (18) −0.0146 (18)
C5 0.027 (2) 0.036 (2) 0.024 (2) −0.0010 (18) −0.0036 (17) −0.0159 (18)
C6 0.027 (2) 0.034 (2) 0.043 (3) −0.0028 (18) −0.0070 (19) −0.021 (2)
C7 0.047 (3) 0.038 (3) 0.059 (3) 0.010 (2) −0.016 (2) −0.022 (2)
C8 0.035 (3) 0.054 (3) 0.074 (4) 0.009 (2) −0.022 (3) −0.027 (3)
C9 0.033 (3) 0.050 (3) 0.062 (3) −0.006 (2) −0.015 (2) −0.024 (3)
C10 0.033 (2) 0.037 (2) 0.034 (2) −0.0029 (19) −0.0070 (19) −0.016 (2)
C11 0.025 (2) 0.044 (3) 0.038 (3) 0.0033 (18) −0.0082 (19) −0.026 (2)
C12 0.048 (3) 0.040 (3) 0.036 (3) 0.008 (2) −0.012 (2) −0.016 (2)
C13 0.137 (6) 0.041 (3) 0.054 (4) 0.002 (3) −0.031 (4) −0.015 (3)
C14 0.093 (4) 0.051 (3) 0.037 (3) 0.001 (3) −0.014 (3) −0.011 (3)
C15 0.020 (2) 0.042 (2) 0.029 (2) 0.0004 (18) −0.0021 (18) −0.016 (2)
C16 0.035 (2) 0.050 (3) 0.035 (2) 0.005 (2) −0.009 (2) −0.026 (2)
C17 0.048 (3) 0.052 (3) 0.031 (2) −0.013 (2) −0.005 (2) −0.017 (2)
C18 0.058 (3) 0.043 (3) 0.044 (3) −0.001 (2) −0.012 (2) −0.025 (2)
C19 0.107 (5) 0.048 (3) 0.094 (5) −0.012 (3) −0.007 (4) −0.034 (4)
C20 0.050 (3) 0.051 (3) 0.046 (3) 0.012 (2) −0.023 (2) −0.032 (2)
C21 0.042 (3) 0.040 (3) 0.033 (2) −0.001 (2) −0.011 (2) −0.017 (2)
F1 0.0455 (16) 0.0343 (14) 0.075 (2) −0.0060 (12) −0.0167 (14) −0.0245 (14)
F2 0.0437 (18) 0.082 (2) 0.143 (4) 0.0242 (17) −0.048 (2) −0.041 (2)
N1 0.057 (3) 0.048 (2) 0.049 (3) 0.008 (2) −0.002 (2) −0.030 (2)
N2 0.050 (3) 0.060 (3) 0.036 (2) −0.005 (2) 0.003 (2) −0.019 (2)
N3 0.0328 (19) 0.043 (2) 0.0258 (19) 0.0026 (16) −0.0049 (15) −0.0214 (17)
N4 0.0309 (19) 0.036 (2) 0.0232 (18) 0.0019 (15) −0.0046 (15) −0.0153 (15)
N5 0.036 (2) 0.043 (2) 0.030 (2) −0.0042 (16) −0.0038 (16) −0.0212 (17)
N6 0.039 (2) 0.050 (2) 0.033 (2) −0.0022 (18) −0.0007 (17) −0.0214 (18)
O1 0.0352 (17) 0.0327 (16) 0.0405 (18) 0.0086 (13) −0.0139 (14) −0.0183 (14)
O2 0.0464 (19) 0.057 (2) 0.047 (2) 0.0239 (16) −0.0270 (16) −0.0315 (17)
O3 0.060 (2) 0.045 (2) 0.054 (2) −0.0065 (17) 0.0030 (18) −0.0210 (18)
O4 0.071 (3) 0.071 (2) 0.074 (3) 0.018 (2) −0.018 (2) −0.052 (2)
C1A 0.102 (13) 0.108 (13) 0.095 (12) −0.001 (9) −0.034 (9) −0.034 (9)
Cl1 0.178 (9) 0.167 (9) 0.210 (10) 0.003 (6) 0.005 (7) −0.096 (7)
Cl2 0.363 (17) 0.382 (18) 0.371 (18) 0.015 (10) −0.130 (10) −0.153 (11)
C1B 0.073 (11) 0.102 (12) 0.104 (13) 0.007 (8) −0.023 (9) −0.022 (9)
Cl1' 0.162 (9) 0.207 (9) 0.181 (9) −0.023 (6) −0.020 (6) −0.112 (7)
Cl2' 0.310 (15) 0.319 (15) 0.367 (16) 0.024 (9) −0.121 (10) −0.119 (10)

Geometric parameters (Å, °)

C1—N1 1.306 (6) C15—O2 1.226 (5)
C1—N2 1.342 (6) C15—N4 1.348 (5)
C1—H1 0.9300 C15—C16 1.519 (6)
C2—N2 1.304 (6) C16—N5 1.460 (5)
C2—N3 1.326 (5) C16—H16A 0.9700
C2—H2 0.9300 C16—H16B 0.9700
C3—N3 1.455 (5) C17—C18 1.345 (6)
C3—C4 1.541 (6) C17—N5 1.364 (6)
C3—H3A 0.9700 C17—H17 0.9300
C3—H3B 0.9700 C18—C20 1.444 (7)
C4—O1 1.418 (5) C18—C19 1.487 (7)
C4—C5 1.517 (6) C19—H19A 0.9600
C4—C11 1.533 (6) C19—H19B 0.9600
C5—C10 1.383 (6) C19—H19C 0.9600
C5—C6 1.386 (6) C20—O4 1.222 (5)
C6—F1 1.356 (4) C20—N6 1.362 (6)
C6—C7 1.364 (6) C21—O3 1.211 (5)
C7—C8 1.376 (7) C21—N6 1.366 (6)
C7—H7 0.9300 C21—N5 1.370 (5)
C8—F2 1.346 (5) N1—N3 1.355 (5)
C8—C9 1.364 (7) N6—H6 0.8013
C9—C10 1.378 (6) O1—H1A 0.8200
C9—H9 0.9300 C1A—Cl1 1.580 (12)
C10—H10 0.9300 C1A—Cl2 1.581 (12)
C11—N4 1.460 (5) C1A—H1AA 0.9600
C11—H11A 0.9700 C1A—H1AB 0.9601
C11—H11B 0.9700 C1A—H1BA 1.1262
C12—N4 1.448 (5) Cl1—H1BB 1.0513
C12—C13 1.489 (7) C1B—Cl1' 1.590 (12)
C12—C14 1.495 (7) C1B—Cl2' 1.599 (12)
C12—H12 0.9800 C1B—H1AB 0.7735
C13—C14 1.488 (8) C1B—H1BA 0.9600
C13—H13A 0.9700 C1B—H1BB 0.9601
C13—H13B 0.9700 Cl1'—H1AA 1.1355
C14—H14A 0.9700 Cl2'—H1AB 1.6877
C14—H14B 0.9700
N1—C1—N2 115.8 (4) N5—C16—C15 112.0 (3)
N1—C1—H1 122.1 N5—C16—H16A 109.2
N2—C1—H1 122.1 C15—C16—H16A 109.2
N2—C2—N3 110.8 (4) N5—C16—H16B 109.2
N2—C2—H2 124.6 C15—C16—H16B 109.2
N3—C2—H2 124.6 H16A—C16—H16B 107.9
N3—C3—C4 111.7 (3) C18—C17—N5 123.5 (4)
N3—C3—H3A 109.3 C18—C17—H17 118.3
C4—C3—H3A 109.3 N5—C17—H17 118.3
N3—C3—H3B 109.3 C17—C18—C20 117.6 (4)
C4—C3—H3B 109.3 C17—C18—C19 123.2 (5)
H3A—C3—H3B 107.9 C20—C18—C19 119.2 (5)
O1—C4—C5 106.0 (3) C18—C19—H19A 109.5
O1—C4—C11 109.8 (3) C18—C19—H19B 109.5
C5—C4—C11 112.6 (3) H19A—C19—H19B 109.5
O1—C4—C3 109.4 (3) C18—C19—H19C 109.5
C5—C4—C3 111.1 (3) H19A—C19—H19C 109.5
C11—C4—C3 107.9 (3) H19B—C19—H19C 109.5
C10—C5—C6 115.5 (4) O4—C20—N6 120.5 (5)
C10—C5—C4 121.8 (4) O4—C20—C18 124.1 (5)
C6—C5—C4 122.7 (4) N6—C20—C18 115.3 (4)
F1—C6—C7 117.1 (4) O3—C21—N6 123.1 (4)
F1—C6—C5 118.6 (4) O3—C21—N5 122.3 (4)
C7—C6—C5 124.4 (4) N6—C21—N5 114.5 (4)
C6—C7—C8 116.9 (4) C1—N1—N3 101.6 (4)
C6—C7—H7 121.6 C2—N2—C1 102.3 (4)
C8—C7—H7 121.6 C2—N3—N1 109.6 (3)
F2—C8—C9 119.3 (4) C2—N3—C3 130.1 (4)
F2—C8—C7 118.3 (4) N1—N3—C3 120.2 (3)
C9—C8—C7 122.3 (4) C15—N4—C12 122.2 (3)
C8—C9—C10 118.4 (4) C15—N4—C11 118.4 (3)
C8—C9—H9 120.8 C12—N4—C11 119.2 (3)
C10—C9—H9 120.8 C17—N5—C21 121.4 (4)
C9—C10—C5 122.6 (4) C17—N5—C16 121.9 (4)
C9—C10—H10 118.7 C21—N5—C16 116.7 (4)
C5—C10—H10 118.7 C20—N6—C21 127.5 (4)
N4—C11—C4 113.4 (3) C20—N6—H6 121.9
N4—C11—H11A 108.9 C21—N6—H6 110.3
C4—C11—H11A 108.9 C4—O1—H1A 109.5
N4—C11—H11B 108.9 Cl1—C1A—Cl2 122 (2)
C4—C11—H11B 108.9 Cl1—C1A—H1AA 108.7
H11A—C11—H11B 107.7 Cl2—C1A—H1AA 108.8
N4—C12—C13 118.6 (4) Cl1—C1A—H1AB 104.8
N4—C12—C14 119.8 (4) Cl2—C1A—H1AB 104.5
C13—C12—C14 59.8 (3) H1AA—C1A—H1AB 107.3
N4—C12—H12 115.7 Cl1—C1A—H1BA 96.4
C13—C12—H12 115.7 Cl2—C1A—H1BA 124.6
C14—C12—H12 115.7 H1AA—C1A—H1BA 92.2
C14—C13—C12 60.3 (3) H1AB—C1A—H1BA 21.3
C14—C13—H13A 117.7 C1A—Cl1—H1BB 73.9
C12—C13—H13A 117.7 Cl1'—C1B—Cl2' 147 (2)
C14—C13—H13B 117.7 Cl1'—C1B—H1AB 106.6
C12—C13—H13B 117.7 Cl2'—C1B—H1AB 82.9
H13A—C13—H13B 114.9 Cl1'—C1B—H1BA 100.4
C13—C14—C12 59.9 (3) Cl2'—C1B—H1BA 100.3
C13—C14—H14A 117.8 H1AB—C1B—H1BA 25.2
C12—C14—H14A 117.8 Cl1'—C1B—H1BB 99.5
C13—C14—H14B 117.8 Cl2'—C1B—H1BB 100.0
C12—C14—H14B 117.8 H1AB—C1B—H1BB 125.7
H14A—C14—H14B 114.9 H1BA—C1B—H1BB 104.4
O2—C15—N4 123.6 (4) C1B—Cl1'—H1AA 74.3
O2—C15—C16 119.6 (4) C1B—Cl2'—H1AB 27.0
N4—C15—C16 116.7 (4)
N3—C3—C4—O1 −66.7 (4) C17—C18—C20—N6 2.0 (7)
N3—C3—C4—C5 50.0 (4) C19—C18—C20—N6 −179.9 (5)
N3—C3—C4—C11 173.9 (3) N2—C1—N1—N3 −0.6 (6)
O1—C4—C5—C10 −2.4 (5) N3—C2—N2—C1 0.6 (6)
C11—C4—C5—C10 117.7 (4) N1—C1—N2—C2 0.1 (7)
C3—C4—C5—C10 −121.1 (4) N2—C2—N3—N1 −1.0 (5)
O1—C4—C5—C6 176.4 (4) N2—C2—N3—C3 −175.6 (4)
C11—C4—C5—C6 −63.5 (5) C1—N1—N3—C2 1.0 (5)
C3—C4—C5—C6 57.7 (5) C1—N1—N3—C3 176.2 (4)
C10—C5—C6—F1 −179.9 (4) C4—C3—N3—C2 65.9 (6)
C4—C5—C6—F1 1.3 (6) C4—C3—N3—N1 −108.2 (4)
C10—C5—C6—C7 0.3 (6) O2—C15—N4—C12 175.1 (4)
C4—C5—C6—C7 −178.5 (4) C16—C15—N4—C12 −8.5 (5)
F1—C6—C7—C8 179.4 (4) O2—C15—N4—C11 −9.3 (6)
C5—C6—C7—C8 −0.8 (7) C16—C15—N4—C11 167.1 (3)
C6—C7—C8—F2 179.5 (5) C13—C12—N4—C15 −135.1 (5)
C6—C7—C8—C9 0.5 (8) C14—C12—N4—C15 −65.5 (6)
F2—C8—C9—C10 −178.8 (5) C13—C12—N4—C11 49.3 (6)
C7—C8—C9—C10 0.2 (8) C14—C12—N4—C11 118.9 (5)
C8—C9—C10—C5 −0.7 (7) C4—C11—N4—C15 −89.6 (4)
C6—C5—C10—C9 0.4 (6) C4—C11—N4—C12 86.1 (5)
C4—C5—C10—C9 179.3 (4) C18—C17—N5—C21 −1.3 (7)
O1—C4—C11—N4 61.5 (4) C18—C17—N5—C16 178.0 (4)
C5—C4—C11—N4 −56.3 (5) O3—C21—N5—C17 −177.8 (4)
C3—C4—C11—N4 −179.4 (3) N6—C21—N5—C17 2.6 (6)
N4—C12—C13—C14 109.7 (5) O3—C21—N5—C16 2.8 (6)
N4—C12—C14—C13 −107.7 (5) N6—C21—N5—C16 −176.7 (4)
O2—C15—C16—N5 −27.8 (6) C15—C16—N5—C17 100.4 (5)
N4—C15—C16—N5 155.7 (3) C15—C16—N5—C21 −80.3 (5)
N5—C17—C18—C20 −1.1 (7) O4—C20—N6—C21 178.6 (4)
N5—C17—C18—C19 −179.2 (5) C18—C20—N6—C21 −0.6 (7)
C17—C18—C20—O4 −177.2 (5) O3—C21—N6—C20 178.8 (5)
C19—C18—C20—O4 0.9 (8) N5—C21—N6—C20 −1.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N6—H6···N2i 0.80 2.11 2.893 (5) 167.
O1—H1A···O2ii 0.82 2.13 2.903 (4) 158.

Symmetry codes: (i) x+1, y, z−1; (ii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5302).

References

  1. Aoyama, Y., Yoshida, Y. & Sato, R. (1984). J. Biol. Chem. 259, 1661–1666. [PubMed]
  2. Bruker (1997). SMART and SAINT Bruker AXS, Inc., Madison, Wisconsin, USA.
  3. Denning, D. W. (2002). J. Antimicrob. Chemother. 49, 889–891. [DOI] [PubMed]
  4. Fridkin, S. K. & Jarvis, W. R. (1996). Clin. Microbiol. Rev. 9, 499-511. [DOI] [PMC free article] [PubMed]
  5. Gallis, H. A., Drew, R. H. & Pickard, W. W. (1990). Rev. Infect. Dis. 12, 308–329. [DOI] [PubMed]
  6. Hobson, R. P. (2003). J. Hosp. Infect. 55, 159–168. [DOI] [PubMed]
  7. Lamb, D. C., Kelly, D. E., Venkateswarlu, K., Manning, N. J., Bligh, H. F., Schunck, W. H. & Kelly, S. L. (1999). Biochemistry. 38, 8733–8738. [DOI] [PubMed]
  8. Richardson, M. D. (2005). J. Antimicrob. Chemother. 56, i5–i11. [DOI] [PubMed]
  9. Sheehan, D. J., Hitchcock, C. A. & Sibley, C. M. (1999). Clin. Microbiol. Rev. 12, 40–79. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Singh, N. (2001). Clin. Infect. Dis. 33, 1692–1696.
  12. Slavin, M. A. et al. (2002). J. Antimicrob. Chemother. 49, 3–6. [DOI] [PubMed]
  13. Wingard, J. R. & Leather, H. (2004). Biol. Blood Marrow Transplant. 10, 73–90. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034295/lh5302sup1.cif

e-67-o2464-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034295/lh5302Isup2.hkl

e-67-o2464-Isup2.hkl (203.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034295/lh5302Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES