Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2484. doi: 10.1107/S1600536811034210

2-[4-(2-Formyl­phen­oxy)­but­oxy]­benzaldehyde

Aliakbar Dehno Khalaji a, Salar Hafez Ghoran a, Kazuma Gotoh b, Hiroyuki Ishida b,*
PMCID: PMC3200719  PMID: 22065699

Abstract

In the crystal structure of the title compound, C18H18O4, the full mol­ecule is generated by the application of an inversion centre. The mol­ecule is essentially planar, with an r.m.s. deviation of 0.017 (1) Å for all non-H atoms. The mol­ecules are linked through inter­molecular C—H⋯O inter­actions to form a mol­ecular sheet parallel to the (Inline graphic02) plane.

Related literature

For the synthesis and related structures, see: Hu et al. (2005); Aravindan et al. (2003). For related literature on Schiff bases and their transition metal complexes, see: Ilhan et al. (2009, 2010); Yilmaz et al. (2009).graphic file with name e-67-o2484-scheme1.jpg

Experimental

Crystal data

  • C18H18O4

  • M r = 298.34

  • Monoclinic, Inline graphic

  • a = 8.0624 (7) Å

  • b = 14.5896 (7) Å

  • c = 6.8003 (4) Å

  • β = 108.549 (4)°

  • V = 758.35 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 190 K

  • 0.30 × 0.24 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.980, T max = 0.986

  • 12149 measured reflections

  • 2210 independent reflections

  • 1243 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.132

  • S = 1.13

  • 2210 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034210/tk2783sup1.cif

e-67-o2484-sup1.cif (13.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034210/tk2783Isup2.hkl

e-67-o2484-Isup2.hkl (108.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034210/tk2783Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.53 3.397 (2) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science. We also acknowledge Golestan University for partial support of this work.

supplementary crystallographic information

Comment

In recent years, much attention has been paid to the synthesis and coordination chemistry of salicylaldehyde, its Schiff base derivatives and transition metal complexes (Hu et al., 2005; Aravindan et al., 2003; Ilhan et al., 2009, 2010; Yilmaz et al., 2009). The two-arm aldehydes can be condensed with primary diamines to form macrocyclic Schiff base ligands (Ilhan et al., 2009, 2010; Yilmaz et al., 2009).

In the crystal structure, the title molecule, 2,2'-[butane-1,4-diylbis(oxy)]dibenzaldehyde (Fig. 1), lies on a crystallographic inversion center, thus indicating that one half the molecule comprises the asymmetric unit. The molecules are linked through intermolecular C3—H3···O1ii contacts (Table 1), resulting in a molecular sheet parallel to the (102) plane (Fig. 2).

Experimental

The title compound was isolated from the reaction between salicylaldehyde and butane-1,4-diamine in the presence of K2CO3 at 85 °C for about 48 h according to the literature (Hu et al., 2005). A small amount of the precipitate was dissolved in a mixture of methanol-chloroform (1:1 v/v) to make a clear solution and kept at room temperature for 3 days to give single crystals suitable for X-ray diffraction.

Refinement

All H atoms were positioned geometrically (C—H = 0.95 or 0.99 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound, showing a molecular sheet formed by C—H···O hydrogen bonds (dashed lines).

Crystal data

C18H18O4 F(000) = 316.00
Mr = 298.34 Dx = 1.306 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybc Cell parameters from 7072 reflections
a = 8.0624 (7) Å θ = 3.0–30.1°
b = 14.5896 (7) Å µ = 0.09 mm1
c = 6.8003 (4) Å T = 190 K
β = 108.549 (4)° Block, pale-yellow
V = 758.35 (8) Å3 0.30 × 0.24 × 0.15 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID II diffractometer 1243 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.041
ω scans θmax = 30.0°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −11→11
Tmin = 0.980, Tmax = 0.986 k = −20→20
12149 measured reflections l = −9→9
2210 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.0806P] where P = (Fo2 + 2Fc2)/3
2210 reflections (Δ/σ)max = 0.0001
100 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.18122 (15) 0.33844 (8) 0.1640 (2) 0.0554 (4)
O2 0.69626 (12) 0.36790 (7) 0.37956 (16) 0.0343 (3)
C1 0.45915 (17) 0.26677 (9) 0.2840 (2) 0.0307 (3)
C2 0.64045 (18) 0.27981 (9) 0.3598 (2) 0.0297 (3)
C3 0.75273 (18) 0.20492 (10) 0.4082 (2) 0.0327 (3)
H3 0.8758 0.2135 0.4596 0.039*
C4 0.6825 (2) 0.11807 (10) 0.3803 (2) 0.0380 (4)
H4 0.7586 0.0666 0.4134 0.046*
C5 0.5042 (2) 0.10385 (11) 0.3054 (3) 0.0411 (4)
H5 0.4582 0.0434 0.2868 0.049*
C6 0.3940 (2) 0.17801 (10) 0.2582 (2) 0.0380 (4)
H6 0.2712 0.1684 0.2071 0.046*
C7 0.3391 (2) 0.34439 (11) 0.2358 (3) 0.0396 (4)
H7 0.3882 0.4041 0.2625 0.047*
C8 0.88087 (17) 0.38476 (10) 0.4570 (2) 0.0333 (3)
H8A 0.9405 0.3547 0.3674 0.040*
H8B 0.9307 0.3604 0.5996 0.040*
C9 0.90444 (18) 0.48669 (10) 0.4558 (2) 0.0350 (4)
H9A 0.8379 0.5159 0.5387 0.042*
H9B 0.8568 0.5096 0.3117 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0243 (6) 0.0575 (8) 0.0782 (9) 0.0011 (5) 0.0074 (6) −0.0063 (6)
O2 0.0210 (5) 0.0285 (5) 0.0497 (6) −0.0040 (4) 0.0060 (4) −0.0021 (4)
C1 0.0234 (7) 0.0324 (8) 0.0352 (7) −0.0038 (5) 0.0077 (6) −0.0030 (6)
C2 0.0268 (7) 0.0287 (7) 0.0333 (7) −0.0051 (5) 0.0092 (6) −0.0032 (6)
C3 0.0244 (7) 0.0320 (8) 0.0391 (8) −0.0013 (6) 0.0065 (6) −0.0020 (6)
C4 0.0358 (8) 0.0316 (8) 0.0447 (9) 0.0011 (6) 0.0102 (7) 0.0001 (7)
C5 0.0363 (8) 0.0317 (8) 0.0521 (9) −0.0074 (6) 0.0095 (7) −0.0039 (7)
C6 0.0286 (8) 0.0388 (9) 0.0441 (9) −0.0085 (6) 0.0081 (7) −0.0055 (7)
C7 0.0265 (8) 0.0372 (9) 0.0529 (10) −0.0018 (6) 0.0095 (7) −0.0027 (7)
C8 0.0206 (7) 0.0313 (7) 0.0453 (8) −0.0026 (5) 0.0068 (6) −0.0035 (6)
C9 0.0239 (7) 0.0294 (7) 0.0489 (9) −0.0023 (6) 0.0075 (6) −0.0035 (6)

Geometric parameters (Å, °)

O1—C7 1.2128 (18) C5—C6 1.372 (2)
O2—C2 1.3543 (16) C5—H5 0.9500
O2—C8 1.4333 (16) C6—H6 0.9500
C1—C6 1.3874 (19) C7—H7 0.9500
C1—C2 1.3997 (19) C8—C9 1.500 (2)
C1—C7 1.458 (2) C8—H8A 0.9900
C2—C3 1.390 (2) C8—H8B 0.9900
C3—C4 1.376 (2) C9—C9i 1.516 (3)
C3—H3 0.9500 C9—H9A 0.9900
C4—C5 1.379 (2) C9—H9B 0.9900
C4—H4 0.9500
C2—O2—C8 118.21 (11) C5—C6—H6 119.5
C6—C1—C2 118.83 (13) C1—C6—H6 119.5
C6—C1—C7 119.95 (13) O1—C7—C1 124.87 (14)
C2—C1—C7 121.21 (12) O1—C7—H7 117.6
O2—C2—C3 123.48 (13) C1—C7—H7 117.6
O2—C2—C1 116.14 (12) O2—C8—C9 106.66 (11)
C3—C2—C1 120.37 (12) O2—C8—H8A 110.4
C4—C3—C2 118.85 (13) C9—C8—H8A 110.4
C4—C3—H3 120.6 O2—C8—H8B 110.4
C2—C3—H3 120.6 C9—C8—H8B 110.4
C3—C4—C5 121.62 (14) H8A—C8—H8B 108.6
C3—C4—H4 119.2 C8—C9—C9i 111.50 (15)
C5—C4—H4 119.2 C8—C9—H9A 109.3
C6—C5—C4 119.28 (14) C9i—C9—H9A 109.3
C6—C5—H5 120.4 C8—C9—H9B 109.3
C4—C5—H5 120.4 C9i—C9—H9B 109.3
C5—C6—C1 121.05 (14) H9A—C9—H9B 108.0
C8—O2—C2—C3 −0.8 (2) C3—C4—C5—C6 −0.2 (2)
C8—O2—C2—C1 179.88 (12) C4—C5—C6—C1 0.2 (2)
C6—C1—C2—O2 179.34 (12) C2—C1—C6—C5 −0.1 (2)
C7—C1—C2—O2 −1.8 (2) C7—C1—C6—C5 −179.02 (15)
C6—C1—C2—C3 0.0 (2) C6—C1—C7—O1 −3.4 (3)
C7—C1—C2—C3 178.91 (14) C2—C1—C7—O1 177.73 (16)
O2—C2—C3—C4 −179.30 (13) C2—O2—C8—C9 178.18 (12)
C1—C2—C3—C4 0.0 (2) O2—C8—C9—C9i 177.46 (15)
C2—C3—C4—C5 0.1 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1ii 0.95 2.53 3.397 (2) 152

Symmetry codes: (ii) x+1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2783).

References

  1. Aravindan, P. G., Yogavel, M., Thirumavalavan, M., Akilan, P., Velmurugan, D., Kandaswamy, M., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o806–o807. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Hu, P.-Z., Ma, L.-F., Wang, J.-G., Zhao, B.-T. & Wang, L.-Y. (2005). Acta Cryst. E61, o2775–o2777.
  5. Ilhan, S., Temel, H. & Pasa, S. (2009). Chin. Chem. Lett. 20, 339–343.
  6. Ilhan, S., Temel, H., Pasa, S. & Tegin, I. (2010). Russ. J. Coord. Chem. 55, 1402–1409.
  7. Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Yilmaz, I., Ilhan, S., Temel, H. & Kilic, A. (2009). J. Incl. Phenom. Macrocycl. Chem. 63, 163–169.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034210/tk2783sup1.cif

e-67-o2484-sup1.cif (13.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034210/tk2783Isup2.hkl

e-67-o2484-Isup2.hkl (108.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034210/tk2783Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES