Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2410–o2411. doi: 10.1107/S1600536811034027

2-(5,6-Dihydro­benzimidazo[1,2-c]quinazolin-6-yl)-5-meth­oxy­phenol

Naser Eltaher Eltayeb a,b, Siang Guan Teoh a, Suchada Chantrapromma c,, Hoong-Kun Fun d,*,§
PMCID: PMC3200720  PMID: 22058999

Abstract

In the title quinazoline derivative, C21H17N3O2, the benzimidazole unit makes dihedral angles of 8.29 (5) and 81.79 (5)° with the benzene rings of the quinazoline and meth­oxy­phenol units, respectively. The nitro­gen-containing six-membered ring adopts a half-chair conformation. In the crystal, the mol­ecules are linked through O—H⋯N hydrogen bonds into screw chains along the b axis; adjacent chains are further connected by N—H⋯O hydrogen bonds, thereby forming a two-dimensional network lying parallel to the bc plane. Weak C—H⋯π and π⋯π inter­actions with centroid–centroid distances of 3.5258 (8) and 3.7184 (7) Å are present and N⋯O [2.6816 (15) and 3.0519 (15) Å] short contacts also occur.

Related literature

For background to benzoheterocyclic derivatives and their applications, see: Arienzo et al. (2007); Chassaing et al. (2008); Galarcei et al. (2008); Kumar & Rajput (2009); Kung et al. (2009); Podunavac-Kuzmanovic & Cvetkovic (2010); Via et al. (2001); Xue et al. (2011); Zhang et al. (2009). For related structures, see: Eltayeb et al. (2007, 2009, 2011a ,b ). For reference bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o2410-scheme1.jpg

Experimental

Crystal data

  • C21H17N3O2

  • M r = 343.38

  • Monoclinic, Inline graphic

  • a = 9.5408 (1) Å

  • b = 15.6503 (2) Å

  • c = 11.7609 (1) Å

  • β = 110.408 (1)°

  • V = 1645.87 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.28 × 0.25 × 0.22 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.974, T max = 0.980

  • 31713 measured reflections

  • 6610 independent reflections

  • 4637 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.139

  • S = 1.05

  • 6610 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034027/hb6371sup1.cif

e-67-o2410-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034027/hb6371Isup2.hkl

e-67-o2410-Isup2.hkl (323.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034027/hb6371Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O2i 0.907 (19) 2.211 (19) 3.0519 (15) 153.8 (17)
O1—H1O1⋯N2ii 0.98 (2) 1.72 (2) 2.6816 (15) 168 (2)
C2—H2ACg4 0.95 2.85 3.6277 (16) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant No. 1001/PKIMIA/815067. NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. The authors also thank the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Benzoheterocyclic derivatives have been used widely in the pharmaceutical industry and medicine due to their diverse pharmaceutical activities (Arienzo et al., 2007; Chassaing et al., 2008; Kumar et al., 2009; Kung et al., 2009; Podunavac-Kuzmanovic & Cvetkovic, 2010; Zhang et al., 2009) including inhibition against enteroviruses (Xue et al., 2011) and potent antitumor activity (Galarcei et al., 2008; Via et al., 2001). Due to their interesting activities, the benzimidazole and quinazoline scaffolds were selected for our ongoing structural studies (Eltayeb et al., 2007; 2009; 2011a; 2011b).

In the title compound (I) (Fig. 1), the benzimidazole ring system (C1–C7/N1–N2) is planar with the r.m.s. of 0.0086 (1) Å with the most deviation for atom C1 of 0.0183 (1) Å. The benzimidazole makes the dihedral angle of 8.29 (5)° with the C8–C13 benzene ring of the quinazoline moiety (C7–C14/N1/N3). The nitrogen six-membered ring adopts a half-chair conformation with the puckering parameter Q = 0.3941 (13) Å, θ = 59.34 (19)° and φ = 277.7 (2)° (Cremer & Pople, 1975). The orientation of the 5-methoxyphenol can be indicated by the dihedral angle between the phenol ring and benzimidazole of 81.79 (5)°. The methoxy substituted is slightly twisted from its attached benzene ring with the torsion angle C21–O2–C18–C19 = 8.93 (17)°. The bond lengths agree with the literature values (Allen et al., 1987).

In the crystal structure of (I) as shown Fig. 2, the molecules are linked through O—H···N hydrogen bonds (Table 1) into screw chains along the b axis. The adjacent screw chains are further connected by N—H···O hydrogen bonds (Table 1) forming the two-dimensional network parallel to the bc plane. The crystal is further stabilized by C—H···π weak interactions (Table 1). π···π interactions were also observed with centroid···centroid distances: Cg1···Cg3iii = 3.7184 (7) Å and Cg2···Cg2iv = 3.5258 (8) Å; Cg1, Cg2 and Cg3 are the centroids of C1/C6/C7/N1–N2, C1–C6 and C8–C13 rings, respectively (symmetry codes: (iii) = -x, 1-y, -z and (iv) = -x, 1-y 1-z). N···O[2.6816 (15) and 3.0519 (15) Å] short contacts were also observed.

Experimental

The title compound was synthesized by adding 2-hydroxy-4-methoxybenzaldehyde (0.304 g, 2.0 mmol) to a solution of 2-(2-aminophenyl)-1H-benzimidazole (0.418 g, 2.0 mmol) in ethanol (30 mL). The mixture was refluxed with stirring for 2 hrs. The color of the resulting solution was pale-yellow. Pale-yellow blocks were formed after three weeks of slow evaporation of ethanol at room temperature.

Refinement

H atom attached to O1 and N3 were located in a difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.95 Å for aromatic and CH; and 0.98 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.67 Å from C13 and the deepest hole is located at 0.45 Å from C14.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the a axis, showing 2D network parallel to the bc plane. Hydrogen bonds are shown as dashed lines.

Crystal data

C21H17N3O2 F(000) = 720
Mr = 343.38 Dx = 1.386 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6610 reflections
a = 9.5408 (1) Å θ = 2.3–33.8°
b = 15.6503 (2) Å µ = 0.09 mm1
c = 11.7609 (1) Å T = 100 K
β = 110.408 (1)° Block, pale yellow
V = 1645.87 (3) Å3 0.28 × 0.25 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 6610 independent reflections
Radiation source: sealed tube 4637 reflections with I > 2σ(I)
graphite Rint = 0.039
φ and ω scans θmax = 33.8°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −14→14
Tmin = 0.974, Tmax = 0.980 k = −24→22
31713 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.6883P] where P = (Fo2 + 2Fc2)/3
6610 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.14755 (11) 0.22525 (6) 0.27396 (8) 0.0225 (2)
O2 0.48793 (10) 0.20256 (6) 0.67860 (8) 0.01967 (19)
N1 0.09967 (11) 0.45602 (7) 0.26995 (9) 0.0155 (2)
N2 −0.06837 (12) 0.56241 (7) 0.21091 (10) 0.0195 (2)
N3 0.32315 (12) 0.45264 (7) 0.22680 (10) 0.0181 (2)
C1 −0.00334 (14) 0.44114 (8) 0.32723 (11) 0.0169 (2)
C2 −0.01453 (15) 0.37959 (9) 0.40964 (12) 0.0214 (3)
H2A 0.0559 0.3344 0.4361 0.026*
C3 −0.13327 (16) 0.38755 (9) 0.45104 (13) 0.0261 (3)
H3A −0.1438 0.3471 0.5078 0.031*
C4 −0.23825 (16) 0.45360 (10) 0.41148 (14) 0.0276 (3)
H4A −0.3193 0.4562 0.4407 0.033*
C5 −0.22662 (15) 0.51499 (9) 0.33108 (13) 0.0251 (3)
H5A −0.2975 0.5600 0.3051 0.030*
C6 −0.10683 (14) 0.50852 (8) 0.28924 (11) 0.0185 (2)
C7 0.05266 (14) 0.52788 (8) 0.19987 (11) 0.0165 (2)
C8 0.13443 (14) 0.55651 (8) 0.12348 (11) 0.0170 (2)
C9 0.08353 (15) 0.62216 (8) 0.03824 (11) 0.0206 (3)
H9A −0.0070 0.6510 0.0303 0.025*
C10 0.16415 (16) 0.64543 (9) −0.03470 (11) 0.0230 (3)
H10A 0.1282 0.6894 −0.0935 0.028*
C11 0.29812 (16) 0.60404 (9) −0.02133 (11) 0.0233 (3)
H11A 0.3534 0.6199 −0.0713 0.028*
C12 0.35181 (16) 0.53980 (9) 0.06425 (11) 0.0209 (3)
H12A 0.4444 0.5128 0.0737 0.025*
C13 0.26941 (14) 0.51475 (8) 0.13664 (11) 0.0171 (2)
C14 0.21403 (13) 0.39827 (8) 0.25378 (10) 0.0157 (2)
H14A 0.1659 0.3593 0.1836 0.019*
C15 0.29119 (13) 0.34584 (8) 0.36554 (10) 0.0148 (2)
C16 0.25404 (13) 0.25964 (8) 0.37158 (11) 0.0159 (2)
C17 0.32374 (13) 0.21322 (8) 0.47774 (10) 0.0162 (2)
H17A 0.2994 0.1547 0.4821 0.019*
C18 0.42921 (13) 0.25281 (8) 0.57752 (10) 0.0154 (2)
C19 0.46985 (14) 0.33780 (8) 0.57194 (11) 0.0171 (2)
H19A 0.5438 0.3643 0.6389 0.021*
C20 0.39884 (13) 0.38268 (8) 0.46523 (11) 0.0163 (2)
H20A 0.4251 0.4408 0.4605 0.020*
C21 0.57945 (16) 0.24524 (10) 0.78736 (12) 0.0258 (3)
H21A 0.6014 0.2060 0.8563 0.039*
H21B 0.5261 0.2953 0.8016 0.039*
H21C 0.6733 0.2635 0.7783 0.039*
H1N3 0.3958 (19) 0.4194 (12) 0.2166 (15) 0.028 (4)*
H1O1 0.126 (2) 0.1665 (15) 0.291 (2) 0.059 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0248 (5) 0.0166 (5) 0.0191 (4) −0.0058 (4) −0.0014 (4) 0.0006 (3)
O2 0.0217 (4) 0.0185 (4) 0.0154 (4) −0.0019 (4) 0.0021 (3) 0.0027 (3)
N1 0.0152 (5) 0.0139 (5) 0.0175 (4) 0.0018 (4) 0.0059 (4) 0.0019 (4)
N2 0.0190 (5) 0.0167 (5) 0.0214 (5) 0.0031 (4) 0.0054 (4) 0.0003 (4)
N3 0.0185 (5) 0.0166 (5) 0.0214 (5) 0.0033 (4) 0.0098 (4) 0.0042 (4)
C1 0.0155 (5) 0.0172 (6) 0.0180 (5) −0.0007 (4) 0.0057 (4) −0.0019 (4)
C2 0.0211 (6) 0.0196 (6) 0.0253 (6) 0.0019 (5) 0.0103 (5) 0.0025 (5)
C3 0.0277 (7) 0.0241 (7) 0.0316 (7) −0.0024 (6) 0.0166 (6) 0.0014 (5)
C4 0.0239 (7) 0.0271 (7) 0.0378 (8) −0.0020 (6) 0.0184 (6) −0.0052 (6)
C5 0.0201 (6) 0.0220 (7) 0.0345 (7) 0.0032 (5) 0.0113 (5) −0.0031 (5)
C6 0.0168 (6) 0.0164 (6) 0.0214 (5) 0.0010 (5) 0.0054 (4) −0.0025 (4)
C7 0.0175 (5) 0.0130 (5) 0.0165 (5) 0.0007 (4) 0.0028 (4) −0.0004 (4)
C8 0.0203 (6) 0.0133 (5) 0.0160 (5) −0.0011 (4) 0.0048 (4) −0.0005 (4)
C9 0.0243 (6) 0.0156 (6) 0.0185 (5) −0.0002 (5) 0.0031 (5) 0.0011 (4)
C10 0.0311 (7) 0.0169 (6) 0.0169 (5) −0.0034 (5) 0.0034 (5) 0.0021 (4)
C11 0.0313 (7) 0.0207 (6) 0.0181 (5) −0.0069 (5) 0.0091 (5) −0.0005 (5)
C12 0.0244 (6) 0.0194 (6) 0.0201 (6) −0.0012 (5) 0.0094 (5) −0.0002 (5)
C13 0.0215 (6) 0.0134 (5) 0.0160 (5) −0.0015 (4) 0.0061 (4) −0.0002 (4)
C14 0.0170 (5) 0.0134 (5) 0.0170 (5) 0.0017 (4) 0.0063 (4) 0.0006 (4)
C15 0.0150 (5) 0.0127 (5) 0.0173 (5) 0.0009 (4) 0.0064 (4) 0.0009 (4)
C16 0.0144 (5) 0.0154 (5) 0.0166 (5) 0.0001 (4) 0.0039 (4) −0.0002 (4)
C17 0.0173 (5) 0.0126 (5) 0.0181 (5) −0.0005 (4) 0.0056 (4) 0.0010 (4)
C18 0.0145 (5) 0.0162 (6) 0.0155 (5) 0.0014 (4) 0.0053 (4) 0.0013 (4)
C19 0.0169 (5) 0.0164 (6) 0.0173 (5) −0.0027 (4) 0.0049 (4) −0.0024 (4)
C20 0.0171 (5) 0.0124 (5) 0.0202 (5) −0.0012 (4) 0.0077 (4) −0.0003 (4)
C21 0.0268 (7) 0.0277 (7) 0.0165 (5) −0.0066 (6) −0.0005 (5) 0.0030 (5)

Geometric parameters (Å, °)

O1—C16 1.3516 (14) C8—C13 1.4038 (18)
O1—H1O1 0.98 (2) C9—C10 1.386 (2)
O2—C18 1.3716 (14) C9—H9A 0.9500
O2—C21 1.4373 (15) C10—C11 1.392 (2)
N1—C7 1.3739 (15) C10—H10A 0.9500
N1—C1 1.3913 (16) C11—C12 1.3880 (18)
N1—C14 1.4793 (15) C11—H11A 0.9500
N2—C7 1.3217 (17) C12—C13 1.4012 (18)
N2—C6 1.3894 (17) C12—H12A 0.9500
N3—C13 1.3974 (16) C14—C15 1.5060 (16)
N3—C14 1.4626 (16) C14—H14A 1.0000
N3—H1N3 0.908 (18) C15—C20 1.3863 (16)
C1—C2 1.3967 (18) C15—C16 1.4030 (17)
C1—C6 1.4067 (18) C16—C17 1.3964 (16)
C2—C3 1.3859 (19) C17—C18 1.3964 (17)
C2—H2A 0.9500 C17—H17A 0.9500
C3—C4 1.401 (2) C18—C19 1.3934 (17)
C3—H3A 0.9500 C19—C20 1.3909 (17)
C4—C5 1.379 (2) C19—H19A 0.9500
C4—H4A 0.9500 C20—H20A 0.9500
C5—C6 1.3967 (19) C21—H21A 0.9800
C5—H5A 0.9500 C21—H21B 0.9800
C7—C8 1.4509 (18) C21—H21C 0.9800
C8—C9 1.3989 (17)
C16—O1—H1O1 110.2 (13) C12—C11—C10 120.74 (13)
C18—O2—C21 116.28 (10) C12—C11—H11A 119.6
C7—N1—C1 106.83 (10) C10—C11—H11A 119.6
C7—N1—C14 121.61 (10) C11—C12—C13 119.99 (13)
C1—N1—C14 129.58 (10) C11—C12—H12A 120.0
C7—N2—C6 105.00 (10) C13—C12—H12A 120.0
C13—N3—C14 117.95 (10) N3—C13—C12 121.37 (12)
C13—N3—H1N3 113.2 (11) N3—C13—C8 119.16 (11)
C14—N3—H1N3 109.2 (11) C12—C13—C8 119.36 (11)
N1—C1—C2 133.57 (12) N3—C14—N1 106.57 (10)
N1—C1—C6 104.88 (11) N3—C14—C15 109.75 (10)
C2—C1—C6 121.49 (12) N1—C14—C15 112.25 (9)
C3—C2—C1 116.84 (12) N3—C14—H14A 109.4
C3—C2—H2A 121.6 N1—C14—H14A 109.4
C1—C2—H2A 121.6 C15—C14—H14A 109.4
C2—C3—C4 121.79 (13) C20—C15—C16 118.87 (11)
C2—C3—H3A 119.1 C20—C15—C14 120.27 (11)
C4—C3—H3A 119.1 C16—C15—C14 120.85 (10)
C5—C4—C3 121.50 (13) O1—C16—C17 122.33 (11)
C5—C4—H4A 119.3 O1—C16—C15 117.93 (11)
C3—C4—H4A 119.3 C17—C16—C15 119.71 (11)
C4—C5—C6 117.53 (13) C16—C17—C18 119.96 (11)
C4—C5—H5A 121.2 C16—C17—H17A 120.0
C6—C5—H5A 121.2 C18—C17—H17A 120.0
N2—C6—C5 128.86 (12) O2—C18—C19 123.50 (11)
N2—C6—C1 110.31 (11) O2—C18—C17 115.52 (11)
C5—C6—C1 120.83 (12) C19—C18—C17 120.98 (11)
N2—C7—N1 112.91 (11) C20—C19—C18 117.94 (11)
N2—C7—C8 127.69 (11) C20—C19—H19A 121.0
N1—C7—C8 119.39 (11) C18—C19—H19A 121.0
C9—C8—C13 119.79 (12) C15—C20—C19 122.49 (11)
C9—C8—C7 122.91 (12) C15—C20—H20A 118.8
C13—C8—C7 117.30 (11) C19—C20—H20A 118.8
C10—C9—C8 120.52 (13) O2—C21—H21A 109.5
C10—C9—H9A 119.7 O2—C21—H21B 109.5
C8—C9—H9A 119.7 H21A—C21—H21B 109.5
C9—C10—C11 119.58 (12) O2—C21—H21C 109.5
C9—C10—H10A 120.2 H21A—C21—H21C 109.5
C11—C10—H10A 120.2 H21B—C21—H21C 109.5
C7—N1—C1—C2 −178.82 (14) C14—N3—C13—C8 35.42 (16)
C14—N1—C1—C2 17.3 (2) C11—C12—C13—N3 −177.47 (12)
C7—N1—C1—C6 −1.59 (13) C11—C12—C13—C8 −1.42 (19)
C14—N1—C1—C6 −165.47 (11) C9—C8—C13—N3 176.42 (11)
N1—C1—C2—C3 177.56 (13) C7—C8—C13—N3 −4.28 (17)
C6—C1—C2—C3 0.70 (19) C9—C8—C13—C12 0.28 (18)
C1—C2—C3—C4 0.6 (2) C7—C8—C13—C12 179.57 (11)
C2—C3—C4—C5 −1.3 (2) C13—N3—C14—N1 −49.22 (13)
C3—C4—C5—C6 0.7 (2) C13—N3—C14—C15 −171.00 (10)
C7—N2—C6—C5 −179.60 (13) C7—N1—C14—N3 37.49 (14)
C7—N2—C6—C1 1.18 (14) C1—N1—C14—N3 −160.71 (11)
C4—C5—C6—N2 −178.49 (13) C7—N1—C14—C15 157.67 (11)
C4—C5—C6—C1 0.6 (2) C1—N1—C14—C15 −40.53 (16)
N1—C1—C6—N2 0.28 (14) N3—C14—C15—C20 42.18 (15)
C2—C1—C6—N2 177.93 (11) N1—C14—C15—C20 −76.13 (14)
N1—C1—C6—C5 −179.00 (11) N3—C14—C15—C16 −138.89 (12)
C2—C1—C6—C5 −1.36 (19) N1—C14—C15—C16 102.80 (13)
C6—N2—C7—N1 −2.29 (14) C20—C15—C16—O1 179.23 (11)
C6—N2—C7—C8 176.73 (12) C14—C15—C16—O1 0.28 (17)
C1—N1—C7—N2 2.53 (14) C20—C15—C16—C17 1.05 (18)
C14—N1—C7—N2 167.97 (10) C14—C15—C16—C17 −177.90 (11)
C1—N1—C7—C8 −176.58 (10) O1—C16—C17—C18 −177.68 (11)
C14—N1—C7—C8 −11.14 (17) C15—C16—C17—C18 0.42 (18)
N2—C7—C8—C9 −7.4 (2) C21—O2—C18—C19 8.93 (17)
N1—C7—C8—C9 171.60 (11) C21—O2—C18—C17 −171.12 (11)
N2—C7—C8—C13 173.36 (12) C16—C17—C18—O2 178.11 (11)
N1—C7—C8—C13 −7.68 (17) C16—C17—C18—C19 −1.94 (18)
C13—C8—C9—C10 1.00 (19) O2—C18—C19—C20 −178.13 (11)
C7—C8—C9—C10 −178.26 (12) C17—C18—C19—C20 1.92 (18)
C8—C9—C10—C11 −1.12 (19) C16—C15—C20—C19 −1.06 (18)
C9—C10—C11—C12 0.0 (2) C14—C15—C20—C19 177.89 (11)
C10—C11—C12—C13 1.3 (2) C18—C19—C20—C15 −0.41 (18)
C14—N3—C13—C12 −148.52 (12)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C15–C20 ring.
D—H···A D—H H···A D···A D—H···A
N3—H1N3···O2i 0.907 (19) 2.211 (19) 3.0519 (15) 153.8 (17)
O1—H1O1···N2ii 0.98 (2) 1.72 (2) 2.6816 (15) 168 (2)
C2—H2A···Cg4 0.95 2.85 3.6277 (16) 140

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6371).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arienzo, R., Cramp, S., Dyke, H. J., Lockey, P. M., Norman, D., Roach, A. G., Smith, P., Wong, M. & Wren, S. P. (2007). Bioorg. Med. Chem. Lett 17, 1403–1407. [DOI] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chassaing, C., Berger, M., Heckeroth, A., IIg, T., Jaeger, M., Kern, C., Schmid, K. & Uphoff, M. (2008). J. Med. Chem. 51, 1111–1114. [DOI] [PubMed]
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141–o4142.
  8. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011a). Acta Cryst. E67, m1062–m1063. [DOI] [PMC free article] [PubMed]
  9. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011b). Acta Cryst. E67, m1182–m1183. [DOI] [PMC free article] [PubMed]
  10. Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614. [DOI] [PMC free article] [PubMed]
  11. Galarcei, G. D., Foncea, R. E., Edwards, A. M., Pessoamahana, H., Mahana, C. D. P. & Ebenspergeri, R. A. (2008). Biol. Res 41, 43–50. [PubMed]
  12. Kumar, A. & Rajput, C. S. (2009). Eur. J. Med. Chem 44, 83–90. [DOI] [PubMed]
  13. Kung, P., Casper, M. D., Cook, K. L., Lingardo, L. W., Risen, L. M., Vickers, T. A. & Genady, A. R. (2009). Eur. J. Med. Chem 44, 409–416.
  14. Podunavac-Kuzmanovic, S. & Cvetkovic, D. (2010). Rev. Roum. Chim 55, 363–367.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Via, L. D., Gia, O., Mango, S. M., Settimo, A. D., Marini, A. M., Primofiore, G., Settimo, F. D. A. & Salerno, S. (2001). Il Farmaco, 56, 159–167. [DOI] [PubMed]
  18. Xue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641–2649. [DOI] [PubMed]
  19. Zhang, Y., Chen, Z., Lou, Y. & Yu, Y. (2009). Eur. J. Med. Chem 44, 448–452. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034027/hb6371sup1.cif

e-67-o2410-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034027/hb6371Isup2.hkl

e-67-o2410-Isup2.hkl (323.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034027/hb6371Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES