Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2298–o2299. doi: 10.1107/S1600536811031436

4,4′-Dimeth­oxy-2,2′-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-diyl]bis(methyl­ene)}diphenol

Augusto Rivera a,*, Diego Quiroga a, Jaime Ríos-Motta a, Karla Fejfarová b, Michal Dušek b
PMCID: PMC3200725  PMID: 22065834

Abstract

The title compound, C23H30N2O4, is a Mannich base useful for studying the effect of an electron-donating phenol substituent on intra­molecular hydrogen bonding. In the mol­ecular structure, the cyclo­hexane ring adopts a chair conformation and the five-membered ring has a twisted envelope conformation. Each meth­oxy group is oriented in the same plane of the respective aromatic ring, showing torsion angles below 11.8 (3)° and bond angles between the meth­oxy group and the aromatic ring of 116.6 (2) and 116.6 (1)°. The structure shows inter­actions between two the N atoms of the heterocyclic ring and the hy­droxy groups by intra­molecular O—H⋯N hydrogen-bonding inter­actions. In the crystal, C—H⋯O inter­actions are observed. The crystal studied was a racemic mixture of RR and SS enanti­omers.

Related literature

For related structures, see: Rivera et al. (2010a ,b ). For the effect of the meth­oxy group on mol­ecular structure, see: Özek et al. (2008); Ünver et al. (2009); Jamjah et al. (2011). For related quantum-chemical literature, see: Konschin (1984).graphic file with name e-67-o2298-scheme1.jpg

Experimental

Crystal data

  • C23H30N2O4

  • M r = 398.5

  • Monoclinic, Inline graphic

  • a = 12.7693 (3) Å

  • b = 10.4365 (2) Å

  • c = 16.3229 (4) Å

  • β = 109.579 (3)°

  • V = 2049.53 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 120 K

  • 0.51 × 0.14 × 0.02 mm

Data collection

  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.403, T max = 1

  • 23926 measured reflections

  • 3216 independent reflections

  • 2577 reflections with I > 3σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.105

  • S = 1.70

  • 3216 reflections

  • 268 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al. 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031436/nr2009sup1.cif

e-67-o2298-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031436/nr2009Isup2.hkl

e-67-o2298-Isup2.hkl (126.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031436/nr2009Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.89 (2) 1.90 (2) 2.709 (2) 151.1 (19)
O3—H3⋯N1 0.88 (2) 1.91 (2) 2.706 (2) 150.0 (19)
C8—H8A⋯O2i 0.96 2.55 3.427 (2) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

supplementary crystallographic information

Comment

During our investigations on Mannich bases, we studied the effect of electron-withdrawing or electron-donating substituent of phenol on intramolecular hydrogen bond. Here we report the structure of the title compound (Fig. 1). The X-ray results of the title compound suggest an influence of the methoxy substituent in the hydrogen bonding interaction. The N···H distances and the N···O distances are longer (by about 0.07 Å and 0.05 Å, respectively), than the observed values in a related structure where the p-substituent is a chlorine atom (Rivera, et al. 2010b). However these values are in good agreement with the one found in the related structure where there are not p-substituents [N···H, 1.91 (2) Å; N···O, 2.6894 (14) Å] (Rivera et al., 2010a). Moreover, the observed C—O bond lengths [C10—O1, 1.377 (2) Å; C18—O3, 1.373 (2) Å] are longer in relation to the mentioned related structures [C—O, 1.364 (2) Å, C—O, 1.354 (2) Å] (Rivera et al., 2010a,b), which confirms the decreasing in the intermolecular hydrogen bonding interaction due the electronic influence of a electron-donating substituent as the methoxy group. The crystal packing (Figure 2) displays weak intermolecular C—H···O hydrogen bonds between neighboring molecules, which link them into 1D-chains.

In the crystal structure of the title compound, the cyclohexanediamine fragment adopts a chair conformation. The C—C—C bond angles within the cyclohexane ring are close to normal tetrahedral bond angles in a chair conformation since these values are in the range of 108.4 (2)° to 112.8 (2)°. The imidazolidine moiety has a twisted envelope conformation, indicating that the nitrogen lone pairs are oriented anti-axial to avoid repulsion electronic repulsions. In comparison with the values of the corresponding angles and bond distances in the phenol derivative (Rivera et al., 2010a), the C12—C13—O2 and C20—C21—O4 angles increase by 3.48° and 4.27° respectively, and the C9—C10 and C17—C18 bonds are the longest and the C10—C11 and C18—C19 bond are the shortest in the aromatic rings. These results suggest the existence of a distortion in the aromatic rings, which is present at the p-methoxyphenol moiety in some Schiff bases (Özek et al., 2008; Ünver et al., 2009; Jamjah et al., 2011), which could be explained by the presence of the OH and CH3 groups, such as an STO-3G molecular orbital investigation suggested (Konschin, 1984), where molecular structure optimizations of methoxy-containing benzenes and related compounds indicated significant structural consequences in the aromatic rings by the presence of these substituents due their behavior as π donors and σ acceptors.

Experimental

To a solution of (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo- [8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) in dioxane (3 mL) and water (4 mL) in a two-necked round-bottomed flask, prepared beforehand following previously described procedures, was added dropwise a dioxane solution (3 mL) containing two equivalents of 4-methoxyphenol (248 mg, 2.00 mmol). The mixture was refluxed for about 8h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 34%, m.p. = 436–438 K). Single crystals of titlt compound were grown from a chloroform: methanol solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

Refinement

The hydrogen attached to C atoms were positioned geometrically and kept in ideal positions with C–H distance 0.96 Å during the refinement. The hydroxyl H atoms were found in difference Fourier maps and refined with a distance restraint d(O—H) = 0.84 (2) Å. The isotropic atomic displacement parameters of hydrogen atoms set to 1.5×Ueq(C,O) for methyl and hydroxyl groups and 1.2×Ueq(C) for all other hydrogen atoms.

Figures

Fig. 1.

Fig. 1.

A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds.

Fig. 2.

Fig. 2.

Packing of the molecules of the title compound. Dashed lines indicate weak intermolecular hydrogen bonds.

Crystal data

C23H30N2O4 F(000) = 856
Mr = 398.5 Dx = 1.291 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2yn Cell parameters from 11032 reflections
a = 12.7693 (3) Å θ = 3.7–62.6°
b = 10.4365 (2) Å µ = 0.71 mm1
c = 16.3229 (4) Å T = 120 K
β = 109.579 (3)° Plate, colourless
V = 2049.53 (9) Å3 0.51 × 0.14 × 0.02 mm
Z = 4

Data collection

Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector 3216 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 2577 reflections with I > 3σ(I)
mirror Rint = 0.055
Detector resolution: 10.3784 pixels mm-1 θmax = 62.7°, θmin = 3.8°
Rotation method data acquisition using ω scans h = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −11→11
Tmin = 0.403, Tmax = 1 l = −18→18
23926 measured reflections

Refinement

Refinement on F2 114 constraints
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.70 (Δ/σ)max = 0.003
3216 reflections Δρmax = 0.19 e Å3
268 parameters Δρmin = −0.17 e Å3
2 restraints

Special details

Experimental. CrysAlisPro (Agilent Technologies, 2010), empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 1H NMR (CDCl3, 400 MHz): δ 1.28 (4H, m), 1.84 (2H, m), 2.05 (2H, m), 2.32 (2H, m), 3.40 (2H, d,J = 14.0 Hz, ArCH2N), 3.53 (2H, s, NCH2N), 3.71 (2H, s, ArOCH3), 4.16 (2H, d, J = 14.0 Hz, ArCH2N), 6.51 (2H, d, J= 2.0 Hz), 6.70 (2H, d, J = 8.8 Hz), 6.73 (2H, d, J = 8.8 Hz), 10.05 (2H, bs, ArOH). 13C NMR (CDCl3 , 100 MHz): δ 24.0, 28.9, 55.7, 56.4, 69.1, 75.8, 113.8, 113.9, 116.5, 122.1, 151.1, 152.5.
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.00977 (10) 0.13997 (12) 0.92026 (9) 0.0335 (5)
O2 0.20745 (10) 0.49247 (11) 1.17311 (8) 0.0319 (4)
O3 0.39277 (11) 0.34923 (12) 0.73545 (9) 0.0364 (5)
O4 0.68016 (10) 0.06056 (12) 0.99982 (8) 0.0344 (5)
N1 0.22853 (11) 0.21558 (13) 0.76675 (9) 0.0263 (5)
N2 0.08623 (12) 0.27229 (13) 0.82138 (9) 0.0254 (5)
C1 0.20785 (14) 0.26197 (17) 0.84535 (12) 0.0293 (6)
C2 0.11931 (14) 0.17745 (16) 0.70585 (11) 0.0259 (6)
C3 0.10493 (15) 0.17697 (17) 0.61017 (12) 0.0320 (7)
C4 −0.01711 (15) 0.14831 (17) 0.55879 (12) 0.0338 (7)
C5 −0.09725 (15) 0.23760 (17) 0.58246 (12) 0.0321 (7)
C6 −0.07651 (15) 0.24213 (16) 0.68027 (12) 0.0302 (7)
C7 0.04455 (14) 0.27539 (16) 0.72600 (11) 0.0251 (6)
C8 0.05134 (14) 0.37784 (16) 0.86593 (11) 0.0281 (6)
C9 0.07705 (13) 0.34676 (15) 0.96068 (12) 0.0252 (6)
C10 0.04316 (13) 0.22793 (16) 0.98343 (12) 0.0263 (6)
C11 0.06181 (14) 0.19843 (17) 1.06953 (12) 0.0309 (7)
C12 0.11433 (14) 0.28558 (16) 1.13485 (13) 0.0295 (6)
C13 0.15068 (13) 0.40195 (16) 1.11302 (12) 0.0265 (6)
C14 0.13145 (13) 0.43191 (16) 1.02638 (11) 0.0262 (6)
C15 0.22791 (16) 0.46243 (19) 1.26223 (12) 0.0359 (7)
C16 0.31306 (13) 0.11383 (16) 0.78596 (12) 0.0293 (6)
C17 0.42842 (14) 0.16482 (15) 0.83063 (11) 0.0254 (6)
C18 0.46432 (15) 0.27800 (16) 0.80128 (12) 0.0284 (6)
C19 0.57287 (15) 0.31821 (17) 0.83832 (12) 0.0315 (7)
C20 0.64851 (15) 0.24705 (16) 0.90374 (12) 0.0311 (7)
C21 0.61355 (14) 0.13648 (16) 0.93405 (12) 0.0281 (6)
C22 0.50375 (14) 0.09762 (16) 0.89813 (11) 0.0264 (6)
C23 0.79664 (15) 0.0851 (2) 1.02718 (14) 0.0417 (8)
H1a 0.235321 0.200329 0.89123 0.0352*
H1b 0.240737 0.345116 0.860697 0.0352*
H2 0.104504 0.089121 0.714225 0.0311*
H3a 0.151109 0.111591 0.598758 0.0384*
H3b 0.124388 0.259562 0.593708 0.0384*
H4a −0.029043 0.154845 0.497662 0.0405*
H4b −0.033578 0.061082 0.568652 0.0405*
H5a −0.172313 0.210762 0.552602 0.0385*
H5b −0.091166 0.322414 0.561738 0.0385*
H6a −0.122704 0.306865 0.692378 0.0362*
H6b −0.092114 0.159704 0.699614 0.0362*
H7 0.04643 0.361176 0.705313 0.0301*
H8a −0.027093 0.391828 0.839302 0.0337*
H8b 0.089623 0.454824 0.860471 0.0337*
H11 0.038319 0.116981 1.084521 0.0371*
H12 0.125363 0.265437 1.194548 0.0354*
H14 0.156196 0.512848 1.011693 0.0314*
H15a 0.269655 0.530503 1.298034 0.0539*
H15b 0.158409 0.452464 1.272194 0.0539*
H15c 0.269456 0.384083 1.276543 0.0539*
H16a 0.3102 0.071913 0.732899 0.0352*
H16b 0.296188 0.049866 0.821931 0.0352*
H19 0.596496 0.396257 0.818713 0.0378*
H20 0.724523 0.274297 0.927787 0.0373*
H22 0.479374 0.022481 0.920516 0.0317*
H23a 0.835156 0.023317 1.070319 0.0625*
H23b 0.821887 0.078894 0.978153 0.0625*
H23c 0.811304 0.169675 1.051497 0.0625*
H1 0.0129 (19) 0.160 (2) 0.8762 (13) 0.0503*
H3 0.3253 (14) 0.326 (2) 0.7320 (16) 0.0547*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0384 (7) 0.0312 (7) 0.0300 (8) −0.0083 (5) 0.0101 (6) −0.0029 (5)
O2 0.0367 (7) 0.0311 (7) 0.0269 (7) −0.0039 (5) 0.0095 (6) −0.0047 (5)
O3 0.0392 (7) 0.0326 (7) 0.0368 (8) 0.0016 (6) 0.0119 (7) 0.0087 (6)
O4 0.0267 (6) 0.0360 (7) 0.0362 (8) 0.0021 (5) 0.0049 (6) 0.0024 (5)
N1 0.0278 (7) 0.0249 (7) 0.0257 (9) 0.0024 (6) 0.0081 (7) −0.0016 (6)
N2 0.0281 (7) 0.0249 (7) 0.0230 (8) 0.0025 (6) 0.0083 (7) −0.0009 (6)
C1 0.0301 (9) 0.0305 (10) 0.0273 (11) 0.0008 (7) 0.0095 (8) −0.0027 (7)
C2 0.0279 (9) 0.0235 (9) 0.0254 (10) −0.0018 (7) 0.0079 (8) 0.0000 (7)
C3 0.0355 (10) 0.0329 (10) 0.0285 (11) 0.0008 (7) 0.0118 (9) −0.0011 (8)
C4 0.0397 (10) 0.0321 (10) 0.0272 (11) −0.0055 (8) 0.0081 (9) −0.0006 (8)
C5 0.0302 (10) 0.0315 (10) 0.0298 (11) −0.0055 (7) 0.0037 (9) 0.0005 (8)
C6 0.0289 (9) 0.0276 (9) 0.0333 (11) −0.0005 (7) 0.0095 (8) −0.0014 (7)
C7 0.0299 (9) 0.0214 (8) 0.0234 (10) −0.0002 (7) 0.0082 (8) 0.0028 (7)
C8 0.0331 (9) 0.0238 (9) 0.0282 (10) 0.0043 (7) 0.0113 (8) 0.0009 (7)
C9 0.0246 (8) 0.0240 (9) 0.0286 (10) 0.0048 (7) 0.0108 (8) 0.0006 (7)
C10 0.0248 (9) 0.0255 (9) 0.0285 (11) −0.0017 (7) 0.0086 (8) −0.0013 (7)
C11 0.0313 (9) 0.0281 (9) 0.0343 (11) −0.0031 (7) 0.0122 (9) 0.0034 (8)
C12 0.0284 (9) 0.0329 (10) 0.0279 (11) 0.0010 (7) 0.0102 (8) 0.0024 (8)
C13 0.0241 (8) 0.0286 (9) 0.0272 (10) 0.0030 (7) 0.0091 (8) −0.0039 (7)
C14 0.0274 (9) 0.0210 (8) 0.0324 (11) 0.0024 (7) 0.0130 (8) −0.0003 (7)
C15 0.0403 (11) 0.0391 (11) 0.0259 (11) 0.0020 (8) 0.0080 (9) −0.0047 (8)
C16 0.0288 (9) 0.0246 (9) 0.0335 (11) 0.0030 (7) 0.0091 (8) −0.0011 (7)
C17 0.0286 (9) 0.0237 (9) 0.0263 (10) 0.0016 (7) 0.0125 (8) −0.0043 (7)
C18 0.0349 (9) 0.0259 (9) 0.0268 (10) 0.0033 (7) 0.0137 (8) −0.0001 (7)
C19 0.0370 (10) 0.0270 (9) 0.0358 (11) −0.0027 (7) 0.0190 (9) −0.0039 (8)
C20 0.0294 (9) 0.0327 (10) 0.0337 (11) −0.0038 (7) 0.0138 (9) −0.0081 (8)
C21 0.0301 (9) 0.0286 (9) 0.0264 (10) 0.0029 (7) 0.0106 (8) −0.0037 (7)
C22 0.0305 (9) 0.0231 (9) 0.0277 (10) 0.0013 (7) 0.0124 (8) −0.0012 (7)
C23 0.0282 (9) 0.0524 (13) 0.0409 (13) 0.0044 (9) 0.0071 (9) −0.0009 (10)

Geometric parameters (Å, °)

O1—C10 1.377 (2) C7—H7 0.96
O1—H1 0.89 (2) C8—C9 1.505 (3)
O2—C13 1.3797 (19) C8—H8a 0.96
O2—C15 1.424 (2) C8—H8b 0.96
O3—C18 1.373 (2) C9—C10 1.404 (2)
O3—H3 0.88 (2) C9—C14 1.387 (2)
O4—C21 1.375 (2) C10—C11 1.379 (3)
O4—C23 1.426 (2) C11—C12 1.391 (2)
N1—C1 1.476 (3) C11—H11 0.96
N1—C2 1.4705 (19) C12—C13 1.389 (3)
N1—C16 1.471 (2) C12—H12 0.96
N2—C1 1.473 (2) C13—C14 1.388 (3)
N2—C7 1.467 (2) C14—H14 0.96
N2—C8 1.469 (2) C15—H15a 0.96
C1—H1a 0.96 C15—H15b 0.96
C1—H1b 0.96 C15—H15c 0.96
C2—C3 1.510 (3) C16—C17 1.505 (2)
C2—C7 1.508 (3) C16—H16a 0.96
C2—H2 0.96 C16—H16b 0.96
C3—C4 1.531 (2) C17—C18 1.408 (3)
C3—H3a 0.96 C17—C22 1.386 (2)
C3—H3b 0.96 C18—C19 1.379 (2)
C4—C5 1.526 (3) C19—C20 1.391 (2)
C4—H4a 0.96 C19—H19 0.96
C4—H4b 0.96 C20—C21 1.387 (3)
C5—C6 1.529 (3) C20—H20 0.96
C5—H5a 0.96 C21—C22 1.387 (2)
C5—H5b 0.96 C22—H22 0.96
C6—C7 1.515 (2) C23—H23a 0.96
C6—H6a 0.96 C23—H23b 0.96
C6—H6b 0.96 C23—H23c 0.96
C10—O1—H1 103.8 (13) C9—C8—H8b 109.4712
C13—O2—C15 116.64 (14) H8a—C8—H8b 108.4897
C18—O3—H3 106.3 (15) C8—C9—C10 118.81 (14)
C21—O4—C23 116.64 (15) C8—C9—C14 122.47 (15)
C1—N1—C2 105.73 (14) C10—C9—C14 118.72 (17)
C1—N1—C16 112.57 (13) O1—C10—C9 120.55 (16)
C2—N1—C16 114.24 (13) O1—C10—C11 119.22 (15)
C1—N2—C7 105.00 (15) C9—C10—C11 120.23 (15)
C1—N2—C8 113.02 (13) C10—C11—C12 120.62 (17)
C7—N2—C8 116.51 (12) C10—C11—H11 119.6883
N1—C1—N2 105.84 (13) C12—C11—H11 119.6884
N1—C1—H1a 109.4714 C11—C12—C13 119.48 (18)
N1—C1—H1b 109.4707 C11—C12—H12 120.2628
N2—C1—H1a 109.4711 C13—C12—H12 120.2617
N2—C1—H1b 109.4719 O2—C13—C12 123.89 (16)
H1a—C1—H1b 112.872 O2—C13—C14 116.21 (15)
N1—C2—C3 117.33 (16) C12—C13—C14 119.89 (15)
N1—C2—C7 101.27 (13) C9—C14—C13 121.03 (16)
N1—C2—H2 110.5517 C9—C14—H14 119.4846
C3—C2—C7 111.18 (13) C13—C14—H14 119.4868
C3—C2—H2 100.5211 O2—C15—H15a 109.4711
C7—C2—H2 116.7735 O2—C15—H15b 109.4712
C2—C3—C4 108.40 (17) O2—C15—H15c 109.4713
C2—C3—H3a 109.471 H15a—C15—H15b 109.4715
C2—C3—H3b 109.4714 H15a—C15—H15c 109.4714
C4—C3—H3a 109.471 H15b—C15—H15c 109.4709
C4—C3—H3b 109.4714 N1—C16—C17 112.16 (13)
H3a—C3—H3b 110.5178 N1—C16—H16a 109.4712
C3—C4—C5 112.81 (15) N1—C16—H16b 109.4704
C3—C4—H4a 109.4711 C17—C16—H16a 109.4719
C3—C4—H4b 109.4712 C17—C16—H16b 109.4714
C5—C4—H4a 109.4716 H16a—C16—H16b 106.6446
C5—C4—H4b 109.4708 C16—C17—C18 120.62 (14)
H4a—C4—H4b 105.9139 C16—C17—C22 120.81 (15)
C4—C5—C6 112.76 (14) C18—C17—C22 118.47 (15)
C4—C5—H5a 109.4712 O3—C18—C17 120.90 (15)
C4—C5—H5b 109.471 O3—C18—C19 119.09 (16)
C6—C5—H5a 109.472 C17—C18—C19 120.02 (15)
C6—C5—H5b 109.4709 C18—C19—C20 120.78 (17)
H5a—C5—H5b 105.9654 C18—C19—H19 119.6089
C5—C6—C7 108.22 (17) C20—C19—H19 119.6102
C5—C6—H6a 109.4719 C19—C20—C21 119.63 (16)
C5—C6—H6b 109.4716 C19—C20—H20 120.1833
C7—C6—H6a 109.4709 C21—C20—H20 120.1828
C7—C6—H6b 109.4705 O4—C21—C20 124.67 (15)
H6a—C6—H6b 110.6899 O4—C21—C22 115.77 (16)
N2—C7—C2 100.68 (12) C20—C21—C22 119.55 (15)
N2—C7—C6 117.73 (17) C17—C22—C21 121.48 (17)
N2—C7—H7 110.5362 C17—C22—H22 119.2602
C2—C7—C6 110.69 (14) C21—C22—H22 119.2596
C2—C7—H7 117.589 O4—C23—H23a 109.4708
C6—C7—H7 100.4929 O4—C23—H23b 109.4712
N2—C8—C9 110.44 (13) O4—C23—H23c 109.4711
N2—C8—H8a 109.4713 H23a—C23—H23b 109.4715
N2—C8—H8b 109.4709 H23a—C23—H23c 109.4708
C9—C8—H8a 109.471 H23b—C23—H23c 109.4719
C15—O2—C13—C12 −0.5 (3) C1—N1—C16—C17 −72.95 (18)
C15—O2—C13—C14 −179.80 (16) C2—N1—C16—C17 166.44 (14)
C23—O4—C21—C20 −11.8 (3) C7—N2—C1—N1 −18.92 (16)
C23—O4—C21—C22 169.32 (16) C8—N2—C1—N1 −146.94 (13)
C2—N1—C1—N2 −10.49 (16) C1—N2—C7—C2 39.95 (16)
C16—N1—C1—N2 −135.87 (14) C1—N2—C7—C6 160.30 (14)
C1—N1—C2—C3 155.91 (15) C8—N2—C7—C2 165.82 (14)
C1—N1—C2—C7 34.74 (16) C8—N2—C7—C6 −73.83 (19)
C16—N1—C2—C3 −79.74 (18) C1—N2—C8—C9 −71.56 (18)
C16—N1—C2—C7 159.08 (14) C7—N2—C8—C9 166.70 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.89 (2) 1.90 (2) 2.709 (2) 151.1 (19)
O3—H3···N1 0.88 (2) 1.91 (2) 2.706 (2) 150.0 (19)
C8—H8A···O2i 0.96 2.55 3.427 (2) 152

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NR2009).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  4. Jamjah, R., Nekoomanesh, M., Pourjafar, T., Zohuri, G. H., Afshartaromi, F. & Notash, B. (2011). Acta Cryst. E67, o1775–o1776. [DOI] [PMC free article] [PubMed]
  5. Konschin, H. (1984). J. Mol. Struct. (THEOCHEM), 110, 303–310.
  6. Özek, A., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2008). Acta Cryst. E64, o1579–o1580. [DOI] [PMC free article] [PubMed]
  7. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
  8. Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010a). Acta Cryst. E66, o931. [DOI] [PMC free article] [PubMed]
  9. Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010b). Acta Cryst. E66, o2643. [DOI] [PMC free article] [PubMed]
  10. Ünver, H., Yıldız, M., Özay, H. & Durlu, T. N. (2009). Spectrochim. Acta Part A, 74, 1095–1099. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031436/nr2009sup1.cif

e-67-o2298-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031436/nr2009Isup2.hkl

e-67-o2298-Isup2.hkl (126.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031436/nr2009Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES