Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2463. doi: 10.1107/S1600536811034490

N-(2,3-Dimethyl­phen­yl)-4-methylbenzamide

Vinola Z Rodrigues a, Peter Herich b, B Thimme Gowda a,*, Jozef Kožíšek b
PMCID: PMC3200728  PMID: 22059024

Abstract

In the mol­ecule of the title compound, C16H17NO, the two aromatic rings are almost perpendicular to each other [dihedral angle 85.90 (5)°]. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds which link the mol­ecules, forming C(4) chains running along the c axis.

Related literature

For preparation of the title compound, see: Gowda et al. (2003). For the study of the effect of substituents on the structures and other aspects of N-(ar­yl)amides, see: Arjunan et al. (2004); Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2009); Rodrigues et al. (2011); Saeed et al. (2010).graphic file with name e-67-o2463-scheme1.jpg

Experimental

Crystal data

  • C16H17NO

  • M r = 239.31

  • Monoclinic, Inline graphic

  • a = 8.1723 (3) Å

  • b = 19.3923 (7) Å

  • c = 9.3170 (3) Å

  • β = 111.781 (4)°

  • V = 1371.14 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.76 × 0.12 × 0.09 mm

Data collection

  • Oxford Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009) based on Clark & Reid (1995)] T min = 0.989, T max = 0.994

  • 21529 measured reflections

  • 3806 independent reflections

  • 1925 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.126

  • S = 0.93

  • 3806 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811034490/bt5622sup1.cif

e-67-o2463-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034490/bt5622Isup2.hkl

e-67-o2463-Isup2.hkl (174.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034490/bt5622Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.20 2.9256 (12) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. PH and JK thank the Grant Agencies for their financial support: the VEGA Grant Agency of the Slovak Ministry of Education (grant No. 1/0679/11), the Research and Development Agency (Slovakia) (grant No. APVV-0202-10), and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

The structural aspects of N-aryl amides are of interest due to their chemical and biological importance (Arjunan et al., 2004; Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2003; Saeed et al., 2010). In the present work, as part of a study of the substituent effects on the structures of benzanilides (Gowda et al., 2003, 2009; Rodrigues et al., 2011), the structure of 4-methyl-N-(2,3-dimethylphenyl)benzamide (I) has been determined (Fig. 1). In the crystal, the ortho- and meta-methyl substituents in the anilino ring are positioned anti to the N—H bond, similar to that observed in one of the molecules of 4-methyl-N-(2-methylphenyl)benzamide (II) (Rodrigues et al., 2011).

The central amide group –NHCO– is tilted to the anilino ring with the C10—C9—N1—C1 and C14—C9—N1—C1 torsion angles of -63.4 (2)° and 118.1 (1)°. The C3—C2—C1—N1 and C7—C2—C1—N1 torsion angles are -24.4 (2)° and 156.8 (1)°, respectively, while the C3—C2—C1—O1 and C7—C2—C1—O1 torsion angles are 155.6 (1)° and -23.2 (2)°, respectively. But the C2—C1—N1—C9 and C9—N1—C1—O1 torsion angles are -179.5 (1)° and 0.5 (2)°, respectively.

The packing of molecules linked by N—H···O hydrogen bonds is shown in Fig. 2.

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Cuboid-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All H atoms were visible in difference maps and then treated as riding atoms with C—H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound generated by N—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.

Crystal data

C16H17NO F(000) = 512
Mr = 239.31 Dx = 1.159 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7558 reflections
a = 8.1723 (3) Å θ = 3.5–29.5°
b = 19.3923 (7) Å µ = 0.07 mm1
c = 9.3170 (3) Å T = 293 K
β = 111.781 (4)° Cuboid, colourless
V = 1371.14 (9) Å3 0.76 × 0.12 × 0.09 mm
Z = 4

Data collection

Oxford Xcalibur Ruby Gemini diffractometer 3806 independent reflections
Radiation source: fine-focus sealed tube 1925 reflections with I > 2σ(I)
graphite Rint = 0.030
Detector resolution: 10.4340 pixels mm-1 θmax = 29.5°, θmin = 3.5°
ω scans h = −10→11
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).] k = −24→26
Tmin = 0.989, Tmax = 0.994 l = −12→12
21529 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0738P)2] where P = (Fo2 + 2Fc2)/3
3806 reflections (Δ/σ)max = 0.001
166 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.73885 (17) 0.70346 (6) 0.43887 (13) 0.0447 (3)
C2 0.84624 (17) 0.65196 (6) 0.39419 (13) 0.0440 (3)
C3 0.80527 (19) 0.62986 (7) 0.24275 (14) 0.0512 (3)
H3A 0.7064 0.6474 0.1642 0.061*
C4 0.9099 (2) 0.58240 (7) 0.20867 (15) 0.0572 (4)
H4A 0.8805 0.5684 0.1067 0.069*
C5 1.0570 (2) 0.55487 (7) 0.32099 (16) 0.0571 (4)
C6 1.0959 (2) 0.57579 (8) 0.47215 (17) 0.0613 (4)
H6A 1.1935 0.5573 0.5504 0.074*
C7 0.9927 (2) 0.62340 (7) 0.50858 (14) 0.0552 (4)
H7A 1.0213 0.6366 0.6110 0.066*
C8 1.1734 (3) 0.50369 (9) 0.2821 (2) 0.0863 (5)
H8C 1.2149 0.4698 0.3627 0.104*
H8B 1.2721 0.5274 0.2727 0.104*
H8A 1.1072 0.4813 0.1861 0.104*
C9 0.53294 (17) 0.79984 (6) 0.35140 (12) 0.0433 (3)
C10 0.38966 (17) 0.78287 (7) 0.39137 (13) 0.0476 (3)
C11 0.29061 (19) 0.83671 (9) 0.41903 (14) 0.0579 (4)
C12 0.3352 (2) 0.90411 (9) 0.40209 (17) 0.0671 (4)
H12A 0.2703 0.9397 0.4221 0.081*
C13 0.4729 (2) 0.92024 (8) 0.35643 (15) 0.0635 (4)
H13A 0.4983 0.9660 0.3431 0.076*
C14 0.57237 (19) 0.86776 (7) 0.33078 (14) 0.0519 (3)
H14A 0.6655 0.8779 0.2998 0.062*
C15 0.3376 (2) 0.70931 (8) 0.39997 (17) 0.0644 (4)
H15C 0.2119 0.7050 0.3519 0.077*
H15B 0.3751 0.6955 0.5063 0.077*
H15A 0.3926 0.6804 0.3473 0.077*
C16 0.1334 (2) 0.82157 (11) 0.4618 (2) 0.0875 (6)
H16C 0.0944 0.8634 0.4942 0.105*
H16B 0.1659 0.7887 0.5448 0.105*
H16A 0.0398 0.8030 0.3738 0.105*
N1 0.64148 (14) 0.74732 (5) 0.32655 (10) 0.0464 (3)
H1A 0.6453 0.7433 0.2359 0.056*
O1 0.74010 (13) 0.70534 (5) 0.57153 (9) 0.0590 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0527 (8) 0.0490 (7) 0.0389 (6) −0.0046 (6) 0.0246 (6) −0.0015 (5)
C2 0.0533 (8) 0.0454 (7) 0.0388 (6) −0.0039 (6) 0.0235 (6) 0.0006 (5)
C3 0.0606 (9) 0.0540 (8) 0.0424 (7) 0.0058 (7) 0.0229 (6) −0.0014 (6)
C4 0.0755 (10) 0.0551 (8) 0.0476 (7) 0.0004 (7) 0.0306 (7) −0.0053 (6)
C5 0.0686 (10) 0.0479 (8) 0.0666 (9) 0.0022 (7) 0.0387 (8) 0.0003 (6)
C6 0.0609 (9) 0.0601 (9) 0.0614 (8) 0.0103 (7) 0.0211 (7) 0.0072 (7)
C7 0.0664 (9) 0.0594 (9) 0.0411 (7) 0.0012 (7) 0.0215 (6) 0.0004 (6)
C8 0.0961 (13) 0.0766 (12) 0.1019 (13) 0.0218 (10) 0.0550 (11) 0.0016 (9)
C9 0.0481 (8) 0.0494 (8) 0.0337 (6) −0.0015 (6) 0.0169 (5) −0.0014 (5)
C10 0.0474 (8) 0.0599 (9) 0.0355 (6) −0.0048 (6) 0.0154 (5) −0.0020 (5)
C11 0.0486 (8) 0.0800 (11) 0.0440 (7) 0.0053 (8) 0.0159 (6) −0.0056 (7)
C12 0.0661 (10) 0.0710 (11) 0.0602 (9) 0.0180 (8) 0.0186 (8) −0.0097 (7)
C13 0.0714 (11) 0.0506 (8) 0.0600 (9) 0.0010 (8) 0.0145 (8) −0.0013 (6)
C14 0.0550 (8) 0.0532 (8) 0.0473 (7) −0.0053 (7) 0.0186 (6) 0.0015 (6)
C15 0.0630 (10) 0.0735 (10) 0.0602 (8) −0.0178 (8) 0.0270 (7) 0.0017 (7)
C16 0.0647 (11) 0.1299 (16) 0.0789 (11) 0.0118 (11) 0.0395 (9) −0.0020 (10)
N1 0.0596 (7) 0.0515 (6) 0.0367 (5) 0.0031 (5) 0.0277 (5) 0.0012 (4)
O1 0.0775 (7) 0.0704 (7) 0.0385 (5) 0.0099 (5) 0.0324 (5) 0.0019 (4)

Geometric parameters (Å, °)

C1—O1 1.2327 (13) C9—C10 1.3935 (18)
C1—N1 1.3542 (16) C9—N1 1.4248 (16)
C1—C2 1.4873 (17) C10—C11 1.402 (2)
C2—C7 1.3885 (19) C10—C15 1.4991 (19)
C2—C3 1.3913 (17) C11—C12 1.381 (2)
C3—C4 1.3711 (19) C11—C16 1.509 (2)
C3—H3A 0.9300 C12—C13 1.379 (2)
C4—C5 1.376 (2) C12—H12A 0.9300
C4—H4A 0.9300 C13—C14 1.378 (2)
C5—C6 1.385 (2) C13—H13A 0.9300
C5—C8 1.509 (2) C14—H14A 0.9300
C6—C7 1.375 (2) C15—H15C 0.9600
C6—H6A 0.9300 C15—H15B 0.9600
C7—H7A 0.9300 C15—H15A 0.9600
C8—H8C 0.9600 C16—H16C 0.9600
C8—H8B 0.9600 C16—H16B 0.9600
C8—H8A 0.9600 C16—H16A 0.9600
C9—C14 1.3861 (18) N1—H1A 0.8600
O1—C1—N1 122.69 (12) C9—C10—C11 118.22 (12)
O1—C1—C2 120.95 (11) C9—C10—C15 121.48 (13)
N1—C1—C2 116.36 (10) C11—C10—C15 120.27 (13)
C7—C2—C3 118.04 (12) C12—C11—C10 119.27 (14)
C7—C2—C1 118.87 (10) C12—C11—C16 120.03 (15)
C3—C2—C1 123.07 (12) C10—C11—C16 120.67 (15)
C4—C3—C2 120.36 (13) C13—C12—C11 121.99 (14)
C4—C3—H3A 119.8 C13—C12—H12A 119.0
C2—C3—H3A 119.8 C11—C12—H12A 119.0
C3—C4—C5 121.90 (12) C14—C13—C12 119.20 (14)
C3—C4—H4A 119.0 C14—C13—H13A 120.4
C5—C4—H4A 119.0 C12—C13—H13A 120.4
C4—C5—C6 117.77 (13) C13—C14—C9 119.69 (14)
C4—C5—C8 121.57 (13) C13—C14—H14A 120.2
C6—C5—C8 120.66 (14) C9—C14—H14A 120.2
C7—C6—C5 121.17 (13) C10—C15—H15C 109.5
C7—C6—H6A 119.4 C10—C15—H15B 109.5
C5—C6—H6A 119.4 H15C—C15—H15B 109.5
C6—C7—C2 120.73 (12) C10—C15—H15A 109.5
C6—C7—H7A 119.6 H15C—C15—H15A 109.5
C2—C7—H7A 119.6 H15B—C15—H15A 109.5
C5—C8—H8C 109.5 C11—C16—H16C 109.5
C5—C8—H8B 109.5 C11—C16—H16B 109.5
H8C—C8—H8B 109.5 H16C—C16—H16B 109.5
C5—C8—H8A 109.5 C11—C16—H16A 109.5
H8C—C8—H8A 109.5 H16C—C16—H16A 109.5
H8B—C8—H8A 109.5 H16B—C16—H16A 109.5
C14—C9—C10 121.54 (12) C1—N1—C9 123.11 (9)
C14—C9—N1 117.78 (11) C1—N1—H1A 118.4
C10—C9—N1 120.67 (11) C9—N1—H1A 118.4
O1—C1—C2—C7 −23.19 (18) C14—C9—C10—C15 174.52 (11)
N1—C1—C2—C7 156.80 (12) N1—C9—C10—C15 −3.88 (17)
O1—C1—C2—C3 155.62 (13) C9—C10—C11—C12 1.61 (17)
N1—C1—C2—C3 −24.40 (18) C15—C10—C11—C12 −176.44 (12)
C7—C2—C3—C4 −1.4 (2) C9—C10—C11—C16 179.66 (12)
C1—C2—C3—C4 179.75 (12) C15—C10—C11—C16 1.61 (18)
C2—C3—C4—C5 0.2 (2) C10—C11—C12—C13 1.0 (2)
C3—C4—C5—C6 1.0 (2) C16—C11—C12—C13 −177.06 (14)
C3—C4—C5—C8 −178.80 (14) C11—C12—C13—C14 −1.8 (2)
C4—C5—C6—C7 −1.1 (2) C12—C13—C14—C9 −0.10 (19)
C8—C5—C6—C7 178.74 (15) C10—C9—C14—C13 2.77 (17)
C5—C6—C7—C2 −0.1 (2) N1—C9—C14—C13 −178.78 (11)
C3—C2—C7—C6 1.4 (2) O1—C1—N1—C9 0.50 (19)
C1—C2—C7—C6 −179.77 (13) C2—C1—N1—C9 −179.49 (10)
C14—C9—C10—C11 −3.50 (17) C14—C9—N1—C1 118.12 (13)
N1—C9—C10—C11 178.09 (10) C10—C9—N1—C1 −63.42 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 2.20 2.9256 (12) 143.

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5622).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159. [DOI] [PubMed]
  3. Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.
  4. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  5. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  7. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  8. Gowda, B. T., Tokarčík, M., Kožíšek, J., Chaithanya, U. & Fuess, H. (2009). Acta Cryst. E65, o630. [DOI] [PMC free article] [PubMed]
  9. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  10. Rodrigues, V. Z., Fronc, M., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o1500. [DOI] [PMC free article] [PubMed]
  11. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811034490/bt5622sup1.cif

e-67-o2463-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034490/bt5622Isup2.hkl

e-67-o2463-Isup2.hkl (174.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034490/bt5622Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES