Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2390. doi: 10.1107/S1600536811032806

8-Phenyl-3,4,6,7,8,8a-hexahydro-1H-pyrrolo­[2,1-c][1,4]oxazin-6-one

Magdalena Małecka a,*, Beata Pasternak b, Stanisław Leśniak b
PMCID: PMC3200730  PMID: 22058987

Abstract

In the title compound, C13H15NO2, the hexa­hydro­pyrrolo­[2,1-c][1,4]oxazine fragment is disordered over two conformations (A and B) in a 0.656 (5):0.344 (5) ratio. The five-membered ring is similarly disordered and adopts an envelope conformation in A, while in B this ring is nearly planar [maximum deviation = 0.088 (1) Å]. The six-membered rings in both A and B exhibit chair conformations. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into ribbons propagating in [010].

Related literature

For the synthesis, see: Leśniak et al. (2009). For bond-length data, see: Allen et al. (1987). For the biological properties of similar structures, see: Nicolaou et al. (2002). For related structures, see: Chaume et al. (2008); Dorsey et al. (2003); Harwood et al. (1997).graphic file with name e-67-o2390-scheme1.jpg

Experimental

Crystal data

  • C13H15NO2

  • M r = 217.27

  • Monoclinic, Inline graphic

  • a = 13.2737 (12) Å

  • b = 7.1066 (4) Å

  • c = 11.9233 (10) Å

  • β = 103.917 (7)°

  • V = 1091.72 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.36 × 0.21 × 0.03 mm

Data collection

  • Stoe IPDS 2 diffractometer

  • 6960 measured reflections

  • 2301 independent reflections

  • 1200 reflections with I > 2σ(I)

  • R int = 0.108

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.109

  • S = 0.81

  • 2301 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: X-AREA (Stoe & Cie, 2000); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032806/cv5138sup1.cif

e-67-o2390-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032806/cv5138Isup2.hkl

e-67-o2390-Isup2.hkl (113.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032806/cv5138Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2i 0.97 2.46 3.329 (3) 149
C7A—H7A⋯O1ii 0.97 2.43 3.154 (4) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from University of Łódź (grant No. 505/721/R to MM) is gratefully acknowledged. The authors thank Dr Klaus Harms from Philipps University in Marburg (Germany) for collecting the data.

supplementary crystallographic information

Comment

In this paper we provide a new oxazin-6-on derivative prepared in one step synthesis in FVT (Leśniak et al., 2009). The title compound (Fig. 1) represents an important structural unit found in biologically active compounds (Nicolaou et al., 2002). The hexahydro-pyrrolo[2,1-c][1,4] oxazine fragment is disordered over two conformations - A and B, respectively - in a ratio 0.656 (5):0.344 (5). Disordered five-membered ring adopts an envelope conformation in A, while in B this ring is nearly planar. Six-membered ring in A and B exhibits a chair conformation. Bond lengths (Allen et al., 1987) and angles are normal and correspond well to those observed in related structures (Chaume et al., 2008; Dorsey et al., 2003; Harwood et al., 1997).

The packing of the molecules in the crystal lattice is stabilized via weak intermolecular C—H···O hydrogen bonds (Table 1), which link the molecules into ribbons propagated in [010].

Experimental

General procedure. The flash vacuum thermolysis reactions were carried out in a 30x2.5 cm electrically heated horizontally oriented quartz tube packed with quartz rings, at 1.5x10-3 Torr. The synthetic precursor (E)-1-morpholin-4-yl-3-phenylprop-2-en-1-one (2 mmol) was slowly sublimed at 80–100°C from a flask held into thermolysis preheated to 950–1000°C. The product thereby obtain was collected in a CO2 acetone trap. After thermolysis, the whole system was brought to atmospheric pressure, allowing slow warming up to room temperature and the products were dissolved in CHCl3. The solvent was removed under reduced pressure and 8-phenyl-hexahydro- pyrrolo[2,1-c][1,4]oxazin-6-one was purified chromatographically on SiO2 and recrystallized from the hexane/CH2Cl2 (1:1) mixture.

Refinement

The morpholin group was treated as disordered over two conformations with occupancies refined to 0.656 (5) and 0.344 (5), respectively. All H-atoms were positioned geometrically and refined with a riding model; for methine H atoms Uiso were constrained to be 1.2 times Ueq of the carrier atom and C—H=0.98 Å.

Figures

Fig. 1.

Fig. 1.

Molecular structure of I with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C13H15NO2 F(000) = 464
Mr = 217.27 Dx = 1.322 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2762 reflections
a = 13.2737 (12) Å θ = 1.6–27.1°
b = 7.1066 (4) Å µ = 0.09 mm1
c = 11.9233 (10) Å T = 100 K
β = 103.917 (7)° Plate, colourless
V = 1091.72 (15) Å3 0.36 × 0.21 × 0.03 mm
Z = 4

Data collection

Stoe IPDS 2 diffractometer 1200 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Rint = 0.108
planar graphite θmax = 26.8°, θmin = 1.6°
Detector resolution: 6.67 pixels mm-1 h = −16→16
rotation method scans k = −8→8
6960 measured reflections l = −14→15
2301 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0509P)2] where P = (Fo2 + 2Fc2)/3
S = 0.81 (Δ/σ)max < 0.001
2301 reflections Δρmax = 0.21 e Å3
196 parameters Δρmin = −0.27 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.047 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C6A 0.6366 (3) 0.7343 (6) 0.8977 (3) 0.0425 (9) 0.656 (5)
H6A 0.6341 0.8221 0.8348 0.051* 0.656 (5)
H6B 0.5799 0.7624 0.9333 0.051* 0.656 (5)
C6B 0.6801 (6) 0.6628 (11) 0.8736 (5) 0.0464 (18) 0.344 (5)
H6C 0.7183 0.5561 0.8543 0.056* 0.344 (5)
H6D 0.6709 0.7541 0.8115 0.056* 0.344 (5)
C5A 0.7290 (3) 0.6480 (5) 1.0830 (3) 0.0409 (9) 0.656 (5)
H5A 0.6657 0.6814 1.1054 0.049* 0.656 (5)
H5B 0.7878 0.6762 1.1466 0.049* 0.656 (5)
C5B 0.7692 (5) 0.5623 (12) 1.0597 (6) 0.0437 (17) 0.344 (5)
H5C 0.7980 0.4684 1.0172 0.052* 0.344 (5)
H5D 0.8204 0.5922 1.1304 0.052* 0.344 (5)
C7A 0.6287 (3) 0.5338 (5) 0.8537 (3) 0.0410 (9) 0.656 (5)
H7A 0.5612 0.5128 0.8019 0.049* 0.656 (5)
H7B 0.6814 0.5110 0.8112 0.049* 0.656 (5)
C7B 0.5784 (6) 0.6015 (11) 0.8900 (6) 0.051 (2) 0.344 (5)
H7C 0.5428 0.7067 0.9152 0.061* 0.344 (5)
H7D 0.5356 0.5545 0.8178 0.061* 0.344 (5)
N1A 0.6434 (2) 0.4075 (4) 0.9511 (2) 0.0353 (7) 0.656 (5)
N1B 0.5961 (5) 0.4532 (9) 0.9771 (5) 0.0411 (15) 0.344 (5)
C4A 0.7283 (3) 0.4418 (5) 1.0511 (2) 0.0364 (9) 0.656 (5)
H4A 0.7948 0.4042 1.0360 0.044* 0.656 (5)
C4B 0.6714 (5) 0.4927 (9) 1.0858 (5) 0.0407 (18) 0.344 (5)
H4B 0.6440 0.5817 1.1339 0.049* 0.344 (5)
O1 0.52984 (10) 0.1832 (2) 0.86955 (11) 0.0594 (5)
O2 0.73644 (10) 0.7476 (2) 0.98285 (11) 0.0568 (4)
C36 0.81951 (14) 0.3636 (3) 1.33444 (16) 0.0453 (5)
H36 0.7745 0.4576 1.3464 0.054*
C2 0.64430 (14) 0.1486 (3) 1.06256 (15) 0.0448 (5)
H2B 0.6954 0.0592 1.0491 0.054*
H2A 0.5935 0.0820 1.0940 0.054*
C32 0.86314 (15) 0.1182 (3) 1.22000 (16) 0.0459 (5)
H32 0.8476 0.0445 1.1536 0.055*
C35 0.91025 (14) 0.3310 (3) 1.41661 (16) 0.0514 (6)
H35 0.9259 0.4034 1.4835 0.062*
C33 0.95397 (15) 0.0859 (3) 1.30222 (18) 0.0516 (6)
H33 0.9991 −0.0083 1.2908 0.062*
C34 0.97791 (15) 0.1928 (3) 1.40096 (17) 0.0523 (6)
H34 1.0392 0.1719 1.4566 0.063*
C3 0.69621 (18) 0.3034 (3) 1.14461 (17) 0.0513 (6)
C31 0.79475 (13) 0.2572 (3) 1.23386 (14) 0.0408 (5)
C1 0.59269 (15) 0.2476 (3) 0.95258 (16) 0.0505 (5)
H7 0.6478 (17) 0.348 (4) 1.1835 (19) 0.074 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C6A 0.0416 (19) 0.041 (2) 0.0405 (18) 0.0053 (17) 0.0014 (14) 0.0030 (16)
C6B 0.060 (5) 0.038 (4) 0.039 (4) 0.002 (4) 0.008 (3) −0.004 (3)
C5A 0.0446 (19) 0.043 (2) 0.0316 (16) 0.0039 (16) 0.0017 (14) 0.0012 (15)
C5B 0.040 (4) 0.040 (5) 0.046 (4) −0.001 (3) 0.002 (3) 0.002 (3)
C7A 0.0405 (18) 0.047 (2) 0.0323 (17) 0.0032 (16) 0.0021 (13) 0.0030 (16)
C7B 0.052 (4) 0.061 (5) 0.033 (3) 0.003 (4) −0.004 (3) 0.009 (3)
N1A 0.0368 (15) 0.0380 (16) 0.0278 (14) 0.0003 (12) 0.0012 (12) 0.0004 (11)
N1B 0.041 (3) 0.051 (4) 0.027 (3) −0.006 (3) 0.000 (2) 0.004 (2)
C4A 0.0326 (17) 0.041 (2) 0.0320 (16) 0.0001 (15) 0.0012 (13) −0.0001 (14)
C4B 0.039 (4) 0.046 (4) 0.034 (3) −0.001 (3) 0.003 (3) −0.003 (3)
O1 0.0560 (8) 0.0739 (11) 0.0405 (8) −0.0204 (8) −0.0034 (7) −0.0059 (7)
O2 0.0596 (8) 0.0651 (10) 0.0396 (8) −0.0191 (7) 0.0001 (6) 0.0087 (7)
C36 0.0479 (10) 0.0486 (12) 0.0393 (11) −0.0088 (9) 0.0103 (8) −0.0029 (9)
C2 0.0427 (10) 0.0501 (12) 0.0392 (11) −0.0101 (9) 0.0052 (8) −0.0007 (9)
C32 0.0566 (12) 0.0460 (13) 0.0338 (10) −0.0097 (9) 0.0082 (9) −0.0034 (9)
C35 0.0500 (12) 0.0702 (16) 0.0325 (11) −0.0172 (11) 0.0070 (9) −0.0101 (10)
C33 0.0476 (11) 0.0527 (14) 0.0522 (13) −0.0031 (9) 0.0073 (10) 0.0005 (11)
C34 0.0449 (11) 0.0690 (16) 0.0389 (11) −0.0107 (11) 0.0019 (9) 0.0050 (11)
C3 0.0674 (14) 0.0440 (13) 0.0347 (11) −0.0032 (10) −0.0031 (10) 0.0024 (10)
C31 0.0493 (10) 0.0421 (11) 0.0287 (10) −0.0098 (9) 0.0050 (8) 0.0019 (9)
C1 0.0506 (11) 0.0627 (15) 0.0345 (11) −0.0167 (10) 0.0027 (9) 0.0008 (10)

Geometric parameters (Å, °)

C6A—O2 1.466 (3) N1B—C4B 1.461 (7)
C6A—C7A 1.513 (6) N1B—C1 1.489 (7)
C6A—H6A 0.9700 C4A—C3 1.618 (4)
C6A—H6B 0.9700 C4A—H4A 0.9800
C6B—O2 1.466 (7) C4B—C3 1.516 (6)
C6B—C7B 1.476 (12) C4B—H4B 0.9800
C6B—H6C 0.9700 O1—C1 1.220 (2)
C6B—H6D 0.9700 C36—C35 1.377 (2)
C5A—O2 1.411 (3) C36—C31 1.389 (3)
C5A—C4A 1.513 (5) C36—H36 0.9300
C5A—H5A 0.9700 C2—C1 1.500 (3)
C5A—H5B 0.9700 C2—C3 1.522 (3)
C5B—C4B 1.491 (10) C2—H2B 0.9700
C5B—O2 1.603 (7) C2—H2A 0.9700
C5B—H5C 0.9700 C32—C33 1.378 (3)
C5B—H5D 0.9700 C32—C31 1.378 (3)
C7A—N1A 1.444 (4) C32—H32 0.9300
C7A—H7A 0.9700 C35—C34 1.373 (3)
C7A—H7B 0.9700 C35—H35 0.9300
C7B—N1B 1.459 (8) C33—C34 1.373 (3)
C7B—H7C 0.9700 C33—H33 0.9300
C7B—H7D 0.9700 C34—H34 0.9300
N1A—C1 1.324 (3) C3—C31 1.511 (3)
N1A—C4A 1.450 (4) C3—H7 0.93 (2)
O2—C6A—C7A 106.0 (3) C5B—C4B—C3 106.7 (6)
O2—C6A—H6A 110.5 N1B—C4B—H4B 111.9
C7A—C6A—H6A 110.5 C5B—C4B—H4B 111.9
O2—C6A—H6B 110.5 C3—C4B—H4B 111.9
C7A—C6A—H6B 110.5 C5A—O2—C6B 114.9 (3)
H6A—C6A—H6B 108.7 C5A—O2—C6A 108.5 (2)
O2—C6B—C7B 106.9 (6) C6B—O2—C6A 34.4 (3)
O2—C6B—H6C 110.3 C5A—O2—C5B 33.9 (3)
C7B—C6B—H6C 110.3 C6B—O2—C5B 100.4 (4)
O2—C6B—H6D 110.3 C6A—O2—C5B 114.8 (3)
C7B—C6B—H6D 110.3 C35—C36—C31 120.5 (2)
H6C—C6B—H6D 108.6 C35—C36—H36 119.8
O2—C5A—C4A 105.7 (3) C31—C36—H36 119.7
O2—C5A—H5A 110.6 C1—C2—C3 105.31 (17)
C4A—C5A—H5A 110.6 C1—C2—H2B 110.7
O2—C5A—H5B 110.6 C3—C2—H2B 110.7
C4A—C5A—H5B 110.6 C1—C2—H2A 110.7
H5A—C5A—H5B 108.7 C3—C2—H2A 110.7
C4B—C5B—O2 105.2 (5) H2B—C2—H2A 108.8
C4B—C5B—H5C 110.7 C33—C32—C31 121.53 (18)
O2—C5B—H5C 110.7 C33—C32—H32 119.2
C4B—C5B—H5D 110.7 C31—C32—H32 119.2
O2—C5B—H5D 110.7 C34—C35—C36 120.81 (19)
H5C—C5B—H5D 108.8 C34—C35—H35 119.6
N1A—C7A—C6A 108.7 (3) C36—C35—H35 119.6
N1A—C7A—H7A 109.9 C34—C33—C32 120.0 (2)
C6A—C7A—H7A 109.9 C34—C33—H33 120.0
N1A—C7A—H7B 109.9 C32—C33—H33 120.0
C6A—C7A—H7B 109.9 C33—C34—C35 119.22 (18)
H7A—C7A—H7B 108.3 C33—C34—H34 120.4
N1B—C7B—C6B 108.1 (5) C35—C34—H34 120.4
N1B—C7B—H7C 110.1 C31—C3—C4B 125.0 (3)
C6B—C7B—H7C 110.1 C31—C3—C2 118.49 (18)
N1B—C7B—H7D 110.1 C4B—C3—C2 109.2 (2)
C6B—C7B—H7D 110.1 C31—C3—C4A 106.91 (19)
H7C—C7B—H7D 108.4 C4B—C3—C4A 37.5 (2)
C1—N1A—C7A 125.0 (2) C2—C3—C4A 98.62 (18)
C1—N1A—C4A 115.5 (2) C31—C3—H7 107.8 (14)
C7A—N1A—C4A 119.0 (3) C4B—C3—H7 80.2 (16)
C7B—N1B—C4B 116.9 (5) C2—C3—H7 107.7 (15)
C7B—N1B—C1 125.3 (5) C4A—C3—H7 117.6 (16)
C4B—N1B—C1 110.2 (4) C32—C31—C36 117.90 (17)
N1A—C4A—C5A 109.0 (2) C32—C31—C3 123.72 (17)
N1A—C4A—C3 100.6 (2) C36—C31—C3 118.36 (19)
C5A—C4A—C3 113.8 (3) O1—C1—N1A 124.2 (2)
N1A—C4A—H4A 111.0 O1—C1—N1B 120.7 (3)
C5A—C4A—H4A 111.0 N1A—C1—N1B 33.7 (2)
C3—C4A—H4A 111.0 O1—C1—C2 127.8 (2)
N1B—C4B—C5B 108.8 (5) N1A—C1—C2 106.68 (17)
N1B—C4B—C3 105.4 (4) N1B—C1—C2 107.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2B···O2i 0.97 2.46 3.329 (3) 149
C7A—H7A···O1ii 0.97 2.43 3.154 (4) 131

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5138).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. O., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–S19.
  2. Chaume, G., Van Severen, M. C., Ricard, L. & Brigaud, T. (2008). J. Fluorine Chem. 129, 1104–1109.
  3. Dorsey, A. D., Barbarow, J. E. & Trauner, D. (2003). Org. Lett. 5, 3237–3239. [DOI] [PubMed]
  4. Harwood, L. M., Hamblett, G., Jimenez-Diaz, A. I. & Watkin, D. J. (1997). Synlett, pp. 935–938.
  5. Leśniak, S., Pasternak, B. & Nazarski, R. (2009). Tetrahedron, 65, 6364–6369.
  6. Nicolaou, K. C., Baran, P. S., Zhong, Y. L. & Sugita, K. (2002). J. Am. Chem. Soc. 124, 2212–2220. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Stoe & Cie. (2000). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032806/cv5138sup1.cif

e-67-o2390-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032806/cv5138Isup2.hkl

e-67-o2390-Isup2.hkl (113.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032806/cv5138Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES