Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2362–o2363. doi: 10.1107/S1600536811032521

Dimethyl 4-(4-hy­droxy­phen­yl)-2,6-dimethyl-1,4-dihydro­pyridine-3,5-dicarboxyl­ate

Chun-Hua Zhang a,*, Jing-Min Zhao b, Bao-Guo Chen a
PMCID: PMC3200733  PMID: 22064645

Abstract

The title mol­ecule, C17H19NO5, was prepared by a Hantzsch dihydro­pyridine synthesis from 4-hy­droxy­benzaldehyde, methyl acetoacetate and NH4HCO3. In the mol­ecular structure of the title compound, the dihydro­pyridine ring adopts a flattened boat conformation and the plane of the base of the boat forms a dihedral angle of 80.8 (2)° with the aromatic six-membered ring. The packing is stabilized by strong inter­molecular N—H⋯Ocarbon­yl, Ohydrox­y—H⋯Ocarbon­yl and weak intra­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the bioactivity and synthesis of 1,4-dihydro­pyridines, see: Yang et al. (2010); Davies et al. (2005); Warrior et al. (2005); Ko & Yao (2006); Rose & Draeger (1992). For related structures, see: Bai et al. (2009); Fun et al. (2009); Thenmozhi et al. (2009). For hydrogen-bond definitions, see: Desiraju & Steiner (1999). For the synthetic method, see: Tamaddon et al. (2010).graphic file with name e-67-o2362-scheme1.jpg

Experimental

Crystal data

  • C17H19NO5

  • M r = 317.33

  • Monoclinic, Inline graphic

  • a = 13.245 (3) Å

  • b = 9.3480 (19) Å

  • c = 13.754 (3) Å

  • β = 110.14 (3)°

  • V = 1598.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan For semi-empirical (using intensity measurements) absorption, see: North et al. (1968) T min = 0.981, T max = 0.990

  • 4588 measured reflections

  • 2931 independent reflections

  • 1212 reflections with I > 2σ(I)

  • R int = 0.104

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.081

  • S = 1.00

  • 2931 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032521/zl2397sup1.cif

e-67-o2362-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032521/zl2397Isup2.hkl

e-67-o2362-Isup2.hkl (143.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032521/zl2397Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811032521/zl2397Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.10 2.936 (4) 164
O1—H1B⋯O2ii 0.82 1.92 2.742 (4) 179
C7—H7A⋯O2 0.98 2.39 2.781 (5) 103
C7—H7A⋯O5 0.98 2.32 2.717 (5) 103
C12—H12A⋯O3 0.96 2.06 2.790 (5) 131
C13—H13A⋯O4 0.96 2.26 2.818 (5) 116

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

In recent years, much attention has been focused on the synthesis of 1,4-dihydropyridine derivatives because of their presence in numerous natural products along with a wide spectrum of their physiological activities (Yang et al., 2010). For example, some dihydropyridines have calcium modulatory properties (Rose & Draeger, 1992), antibacterial activity (Davies et al., 2005), or fungicidal activity (Warrior et al., 2005), to name just a few. Because of the biological importance associated with these compounds, numerous methods had been developed for the synthesis of 1,4-dihydropyridine derivatives, which include the use of microwaves, ionic liquids, refluxing at high temperature, metal triflates, and iodine (Ko & Yao, 2006). However, the use of high temperatures, expensive metal precursors, catalysts that are harmful to the environment, and long reaction times limit the use of many of these methods. Herein, we report a mild and catalyst-free synthesis based on a variation of the commonly used Hantzsch dihydropyridine synthesis (Tamaddon et al., 2010), and the crystal structure of the resultant title compound is presented. Compared to the classical method involving the three-component coupling of an aldehyde with ethyl acetoacetate, and ammonia in acetic acid or in refluxing alcohol, the reation was conducted in water and avoided the use of catalysts, so it was very environmentally benign. Moreover, the workup is very simple and can give the product in high yield after simple filtration.

In the molecular structure of the title compound (Fig. 1), atoms C7 and N1 deviate from the mean plane of atoms C8/C9/C10/C11 in the same direction, by 0.45 (0) and 0.18 (7) Å, respectively, so the heterocyclic ring adopts a boat conformation. In addition, the phenol ring substituent is almost perpendicular to the plane of the atoms C8/C9/C10/C11, with a dihedral angle between them of 80.8 (2)°. The methyl groups are nearly coplanar with the aformentioned plane of the atoms C8/C9/C10/C11, with the methyl C atoms C12 and C13 deviating from the mean plane by 0.12 (4) and 0.22 (2) Å, respectively. The average C—N bond lengths of the title compound are with 1.353 (9) Å similar to those of its phenyl substituted 1,4-dihydropyridine derivative (Bai et al., 2009) which has average C—N bond lenghts of 1.376 (8) Å, its 4-methoxyphenyl substituted 1,4-dihydropyridine derivative (Thenmozhi et al., 2009) which has average C—N bond lenghts of 1.377 (4) Å, and its 4-methylphenyl substituted 1,4-dihydropyridine derivative (Fun et al., 2009) which has average C—N bond lenghts of 1.385 (7) Å.

The crystal packing of the title compound is stabilized by strong intermolecular N—H···Ocarbonyl and Ohydroxyl—H···Ocarbonyl hydrogen bonds (Desiraju & Steiner, 1999), N1—H1A···O4i and O1—H1B···O2ii, and by several weaker intramolecular C—H···O hydrogen bonds, C7—H7A···O2, C7–H7A···O5, C12—H12A···O3, C13—H13A···O4 (see Table 1 for numerical values and symmetry operators).

Experimental

The title compound was obtained according to a reported method (Tamaddon et al., 2010). A mixture of 4-hydroxybenzaldehyde (2 mmol), methyl acetoacetate (4 mmol), and NH4HCO3 (2 mmol) was stirred in water (2 mL) under reflux. After completion of the reaction (TLC monitoring), the mixture was diluted with cold water (20 mL) and filtered to obtain the precipitated product which was further purified by recrystallization. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. IR (KBr) v/cm-1: 3327, 2960, 1685, 1652; 1H NMR (300 MHz, DMSO-d6) δ/ppm: 9.05 (s, 1H, NH), 8.77 (s, 1H, OH), 6.91 (d, 2H, ArH, J = 7.8 Hz), 6.56 (d, 2H, ArH, J = 7.8 Hz), 4.77 (s, 1H, H4), 3.55 (s, 6H, 2COOCH3), 2.25 (s, 6H, 2CH3); MS (ESI) m/z: 318.1 [M+H]+, 340.1 [M+Na]+, 356.0 [M+K]+; Anal. Calcd for C17H19NO5: C, 64.34; H, 6.03; N, 4.41; found: C, 64.46; H, 6.09; N, 4.33.

Refinement

All H atoms were located in a difference map and refined isotropically. The N-H distance of H1A atom (for N1) was constrained to 0.86 Å. All other H atoms were positioned geometrically and treated as riding, with C-H distances in the range 0.93-0.98 Å, an O-H distance of 0.82 Å and Uiso(H) = 1.2 or 1.5 times Ueq(C). The methyl groups were allowed to rotate during the refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C17H19NO5 F(000) = 672
Mr = 317.33 Dx = 1.318 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 13.245 (3) Å θ = 9–12°
b = 9.3480 (19) Å µ = 0.10 mm1
c = 13.754 (3) Å T = 293 K
β = 110.14 (3)° Block, yellow
V = 1598.8 (6) Å3 0.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Nonius CAD 4 diffractometer 1212 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.104
graphite θmax = 25.4°, θmin = 1.8°
ω/2θ scans h = 0→15
Absorption correction: ψ scan For semi-empirical (using intensity measurements) absorption, see: North et al. (1968) k = −4→11
Tmin = 0.981, Tmax = 0.990 l = −16→15
4588 measured reflections 3 standard reflections every 200 reflections
2931 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.005P)2] where P = (Fo2 + 2Fc2)/3
2931 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 0.16 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6521 (3) 0.2025 (3) 0.3016 (2) 0.0547 (9)
H1A 0.6515 0.1445 0.2529 0.066*
O1 1.0141 (2) −0.0866 (3) 0.7601 (2) 0.0705 (9)
H1B 0.9967 −0.1157 0.8083 0.106*
C1 0.8797 (3) 0.1492 (4) 0.5474 (3) 0.0460 (10)
H1C 0.8910 0.1793 0.4875 0.055*
O2 0.5444 (2) 0.3203 (4) 0.5778 (2) 0.0866 (11)
C2 0.9528 (3) 0.0542 (4) 0.6113 (3) 0.0609 (12)
H2A 1.0116 0.0232 0.5947 0.073*
O3 0.4353 (2) 0.1763 (3) 0.4605 (2) 0.0698 (9)
C3 0.9371 (3) 0.0055 (4) 0.7006 (3) 0.0498 (10)
O4 0.8684 (2) 0.5538 (3) 0.3923 (2) 0.0706 (9)
C4 0.8511 (3) 0.0495 (4) 0.7228 (3) 0.0601 (12)
H4A 0.8396 0.0157 0.7816 0.072*
O5 0.8363 (2) 0.5462 (3) 0.5423 (2) 0.0600 (8)
C5 0.7786 (3) 0.1468 (4) 0.6570 (3) 0.0578 (12)
H5A 0.7195 0.1763 0.6735 0.069*
C6 0.7922 (3) 0.2018 (4) 0.5662 (3) 0.0422 (9)
C7 0.7113 (3) 0.3079 (4) 0.4988 (3) 0.0466 (9)
H7A 0.7036 0.3853 0.5438 0.056*
C8 0.5986 (3) 0.2431 (4) 0.4446 (3) 0.0480 (10)
C9 0.5808 (3) 0.1810 (4) 0.3502 (3) 0.0442 (9)
C10 0.7253 (3) 0.3108 (4) 0.3254 (3) 0.0461 (10)
C11 0.7525 (3) 0.3737 (4) 0.4184 (3) 0.0530 (11)
C12 0.4874 (3) 0.0857 (4) 0.2903 (3) 0.0674 (14)
H12A 0.4384 0.0774 0.3276 0.101*
H12B 0.5139 −0.0073 0.2819 0.101*
H12C 0.4508 0.1269 0.2234 0.101*
C13 0.7703 (3) 0.3459 (5) 0.2409 (3) 0.0789 (16)
H13A 0.8426 0.3807 0.2715 0.118*
H13B 0.7266 0.4180 0.1962 0.118*
H13C 0.7703 0.2613 0.2013 0.118*
C14 0.5229 (3) 0.2511 (4) 0.4999 (3) 0.0518 (11)
C15 0.3573 (3) 0.1894 (5) 0.5099 (3) 0.1006 (19)
H15A 0.2957 0.1319 0.4740 0.151*
H15B 0.3359 0.2877 0.5088 0.151*
H15C 0.3878 0.1575 0.5804 0.151*
C16 0.8259 (3) 0.4957 (4) 0.4461 (3) 0.0506 (10)
C17 0.9061 (3) 0.6675 (4) 0.5735 (3) 0.0797 (15)
H17A 0.9123 0.6948 0.6426 0.120*
H17B 0.8770 0.7457 0.5271 0.120*
H17C 0.9759 0.6433 0.5717 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.077 (3) 0.042 (2) 0.048 (2) 0.0006 (19) 0.0258 (18) 0.0007 (17)
O1 0.074 (2) 0.085 (2) 0.0554 (19) 0.0210 (18) 0.0265 (16) 0.0311 (17)
C1 0.060 (3) 0.049 (3) 0.036 (2) 0.010 (2) 0.0251 (19) −0.0016 (17)
O2 0.075 (2) 0.127 (3) 0.059 (2) −0.018 (2) 0.0253 (17) −0.038 (2)
C2 0.058 (3) 0.073 (3) 0.057 (3) 0.004 (2) 0.027 (2) 0.024 (2)
O3 0.0503 (18) 0.104 (3) 0.063 (2) −0.0190 (18) 0.0301 (16) −0.0103 (19)
C3 0.056 (3) 0.053 (2) 0.045 (2) −0.006 (2) 0.024 (2) 0.001 (2)
O4 0.085 (2) 0.075 (2) 0.0512 (19) −0.0162 (18) 0.0227 (16) 0.0111 (16)
C4 0.066 (3) 0.075 (3) 0.045 (3) 0.003 (3) 0.026 (2) 0.014 (2)
O5 0.087 (2) 0.0338 (16) 0.071 (2) −0.0074 (15) 0.0426 (18) −0.0083 (15)
C5 0.052 (3) 0.075 (3) 0.054 (3) 0.011 (2) 0.029 (2) 0.007 (2)
C6 0.048 (2) 0.042 (2) 0.041 (2) −0.0051 (18) 0.0206 (19) 0.0032 (17)
C7 0.054 (3) 0.049 (2) 0.039 (2) 0.012 (2) 0.0183 (19) −0.0042 (19)
C8 0.065 (3) 0.042 (2) 0.036 (2) 0.0020 (19) 0.015 (2) −0.0039 (17)
C9 0.042 (2) 0.045 (2) 0.047 (2) 0.0111 (19) 0.0175 (18) 0.007 (2)
C10 0.058 (3) 0.046 (2) 0.046 (2) 0.000 (2) 0.032 (2) 0.0108 (19)
C11 0.077 (3) 0.043 (2) 0.037 (2) 0.014 (2) 0.019 (2) −0.0060 (19)
C12 0.064 (3) 0.097 (4) 0.040 (2) −0.004 (3) 0.016 (2) −0.021 (3)
C13 0.086 (4) 0.103 (4) 0.054 (3) −0.005 (3) 0.032 (3) −0.003 (3)
C14 0.051 (3) 0.059 (3) 0.040 (2) 0.002 (2) 0.009 (2) −0.002 (2)
C15 0.055 (3) 0.136 (5) 0.112 (4) 0.008 (4) 0.031 (3) −0.018 (4)
C16 0.059 (3) 0.049 (3) 0.053 (3) 0.002 (2) 0.031 (2) 0.016 (2)
C17 0.096 (4) 0.052 (3) 0.075 (3) −0.008 (3) 0.009 (3) 0.000 (3)

Geometric parameters (Å, °)

N1—C9 1.346 (4) C7—C11 1.522 (4)
N1—C10 1.361 (4) C7—C8 1.544 (5)
N1—H1A 0.8600 C7—H7A 0.9800
O1—C3 1.370 (4) C8—C9 1.367 (4)
O1—H1B 0.8200 C8—C14 1.455 (5)
C1—C6 1.363 (4) C9—C12 1.517 (4)
C1—C2 1.383 (4) C10—C11 1.340 (5)
C1—H1C 0.9300 C10—C13 1.514 (4)
O2—C14 1.199 (4) C11—C16 1.461 (5)
C2—C3 1.391 (4) C12—H12A 0.9600
C2—H2A 0.9300 C12—H12B 0.9600
O3—C14 1.302 (4) C12—H12C 0.9600
O3—C15 1.424 (4) C13—H13A 0.9600
C3—C4 1.341 (4) C13—H13B 0.9600
O4—C16 1.203 (4) C13—H13C 0.9600
C4—C5 1.403 (5) C15—H15A 0.9600
C4—H4A 0.9300 C15—H15B 0.9600
O5—C16 1.366 (4) C15—H15C 0.9600
O5—C17 1.433 (4) C17—H17A 0.9600
C5—C6 1.417 (4) C17—H17B 0.9600
C5—H5A 0.9300 C17—H17C 0.9600
C6—C7 1.520 (5)
C9—N1—C10 123.7 (3) C11—C10—N1 119.4 (3)
C9—N1—H1A 118.2 C11—C10—C13 126.2 (4)
C10—N1—H1A 118.2 N1—C10—C13 114.4 (4)
C3—O1—H1B 109.5 C10—C11—C16 121.8 (4)
C6—C1—C2 124.5 (3) C10—C11—C7 118.1 (4)
C6—C1—H1C 117.8 C16—C11—C7 119.9 (3)
C2—C1—H1C 117.8 C9—C12—H12A 109.5
C1—C2—C3 119.1 (4) C9—C12—H12B 109.5
C1—C2—H2A 120.5 H12A—C12—H12B 109.5
C3—C2—H2A 120.5 C9—C12—H12C 109.5
C14—O3—C15 116.3 (3) H12A—C12—H12C 109.5
C4—C3—O1 124.9 (4) H12B—C12—H12C 109.5
C4—C3—C2 119.8 (4) C10—C13—H13A 109.5
O1—C3—C2 115.2 (3) C10—C13—H13B 109.5
C3—C4—C5 119.9 (4) H13A—C13—H13B 109.5
C3—C4—H4A 120.1 C10—C13—H13C 109.5
C5—C4—H4A 120.1 H13A—C13—H13C 109.5
C16—O5—C17 113.8 (3) H13B—C13—H13C 109.5
C4—C5—C6 122.4 (4) O2—C14—O3 124.5 (4)
C4—C5—H5A 118.8 O2—C14—C8 120.0 (4)
C6—C5—H5A 118.8 O3—C14—C8 115.5 (4)
C1—C6—C5 114.3 (4) O3—C15—H15A 109.5
C1—C6—C7 126.0 (3) O3—C15—H15B 109.5
C5—C6—C7 119.8 (3) H15A—C15—H15B 109.5
C6—C7—C11 110.6 (3) O3—C15—H15C 109.5
C6—C7—C8 113.6 (3) H15A—C15—H15C 109.5
C11—C7—C8 109.7 (3) H15B—C15—H15C 109.5
C6—C7—H7A 107.6 O4—C16—O5 121.8 (4)
C11—C7—H7A 107.6 O4—C16—C11 127.0 (4)
C8—C7—H7A 107.6 O5—C16—C11 111.0 (3)
C9—C8—C14 126.5 (4) O5—C17—H17A 109.5
C9—C8—C7 116.5 (3) O5—C17—H17B 109.5
C14—C8—C7 117.0 (3) H17A—C17—H17B 109.5
N1—C9—C8 119.2 (4) O5—C17—H17C 109.5
N1—C9—C12 113.5 (3) H17A—C17—H17C 109.5
C8—C9—C12 127.3 (3) H17B—C17—H17C 109.5
C6—C1—C2—C3 1.0 (7) C7—C8—C9—C12 167.3 (4)
C1—C2—C3—C4 0.9 (7) C9—N1—C10—C11 21.1 (6)
C1—C2—C3—O1 −179.1 (4) C9—N1—C10—C13 −160.3 (3)
O1—C3—C4—C5 178.6 (4) N1—C10—C11—C16 −176.5 (3)
C2—C3—C4—C5 −1.3 (7) C13—C10—C11—C16 5.0 (7)
C3—C4—C5—C6 0.0 (7) N1—C10—C11—C7 7.9 (6)
C2—C1—C6—C5 −2.1 (6) C13—C10—C11—C7 −170.6 (4)
C2—C1—C6—C7 179.0 (4) C6—C7—C11—C10 92.2 (4)
C4—C5—C6—C1 1.6 (6) C8—C7—C11—C10 −33.9 (5)
C4—C5—C6—C7 −179.4 (4) C6—C7—C11—C16 −83.5 (4)
C1—C6—C7—C11 −12.1 (5) C8—C7—C11—C16 150.4 (3)
C5—C6—C7—C11 169.1 (3) C15—O3—C14—O2 5.5 (7)
C1—C6—C7—C8 111.8 (4) C15—O3—C14—C8 −176.4 (4)
C5—C6—C7—C8 −67.0 (4) C9—C8—C14—O2 −172.9 (4)
C6—C7—C8—C9 −88.5 (4) C7—C8—C14—O2 8.7 (6)
C11—C7—C8—C9 35.9 (5) C9—C8—C14—O3 8.9 (6)
C6—C7—C8—C14 90.1 (4) C7—C8—C14—O3 −169.5 (4)
C11—C7—C8—C14 −145.5 (3) C17—O5—C16—O4 −3.2 (6)
C10—N1—C9—C8 −18.3 (6) C17—O5—C16—C11 −179.1 (3)
C10—N1—C9—C12 162.1 (4) C10—C11—C16—O4 0.8 (7)
C14—C8—C9—N1 169.3 (4) C7—C11—C16—O4 176.3 (4)
C7—C8—C9—N1 −12.3 (5) C10—C11—C16—O5 176.4 (4)
C14—C8—C9—C12 −11.2 (7) C7—C11—C16—O5 −8.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4i 0.86 2.10 2.936 (4) 164
O1—H1B···O2ii 0.82 1.92 2.742 (4) 179
C7—H7A···O2 0.98 2.39 2.781 (5) 103
C7—H7A···O5 0.98 2.32 2.717 (5) 103
C12—H12A···O3 0.96 2.06 2.790 (5) 131
C13—H13A···O4 0.96 2.26 2.818 (5) 116

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2397).

References

  1. Bai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799. [DOI] [PMC free article] [PubMed]
  2. Davies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6911442.
  3. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.
  4. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  5. Fun, H.-K., Liew, W.-C., Reddy, B. P., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2342–o2343. [DOI] [PMC free article] [PubMed]
  6. Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
  7. Ko, S. K. & Yao, C. F. (2006). Tetrahedron, 62, 7293–7299.
  8. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  9. Rose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238–2243. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Tamaddon, F., Razmi, A. & Jafari, A. (2010). Tetrahedron Lett. 51, 1187–1189.
  12. Thenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2795. [DOI] [PMC free article] [PubMed]
  13. Warrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.
  14. Yang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032521/zl2397sup1.cif

e-67-o2362-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032521/zl2397Isup2.hkl

e-67-o2362-Isup2.hkl (143.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032521/zl2397Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811032521/zl2397Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES