Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2429. doi: 10.1107/S1600536811033034

(Z)-2-Sulfanyl­idene-5-(thio­phen-2-yl­methyl­idene)imidazolidin-4-one

Abdullah M Asiri a,b, Hassan M Faidallah a, Abdulrahman O Al-Youbi a, Tarik R Sobahi a, Seik Weng Ng c,a,*
PMCID: PMC3200739  PMID: 22064773

Abstract

The mol­ecule of the title compound, C8H6N2OS2, has a V shape with two five-membered rings attached to a methyl­ene C atom. All non-H atoms are approximately coplanar (r.m.s. deviation = 0.096 Å). In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into layers. The thio­phene ring is disordered over two positions; the major orientation has an occupancy of 0.683 (3). is there an intramolecular N---H...S bond?

Related literature

For two 5-aryl-2-thioxoimidazolin-4-ones, see: Chowdhry et al. (2000); Książek et al. (2009).graphic file with name e-67-o2429-scheme1.jpg

Experimental

Crystal data

  • C8H6N2OS2

  • M r = 210.27

  • Triclinic, Inline graphic

  • a = 6.1022 (6) Å

  • b = 7.0806 (8) Å

  • c = 11.0425 (13) Å

  • α = 72.582 (11)°

  • β = 76.116 (10)°

  • γ = 75.640 (9)°

  • V = 433.87 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.22 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.02 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.356, T max = 0.903

  • 2599 measured reflections

  • 1677 independent reflections

  • 1519 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.122

  • S = 1.04

  • 1677 reflections

  • 134 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033034/bt5612sup1.cif

e-67-o2429-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033034/bt5612Isup2.hkl

e-67-o2429-Isup2.hkl (82.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033034/bt5612Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.88 2.20 2.873 (2) 133

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The crystal structures of only a small number of 5-aryl-2-thioxoimidazolidin-4-ones have been reported, with that of the phenyl homolog been described only recently. The bond dimensions of the parent compound are used to explain the nature of the products of its cycloaddition reaction (Książek et al., 2009). The 2-pyridyl derivative is also a flat molecule (Chowdhry et al., 2000) The thienyl analog (Scheme I) is similarly planar (r.m.s. deviation 0.096 Å). The molecule has a somewhat butterfly shape with the two five-membered rings attached to the methylene carbon (Fig. 1). The –NH– unit at the 4-position (of one ring) points towards the S atom in the 2-position (of the other ring); however, the interaction is too weak to lock the molecule so that the thienyl ring is able to adopt two orientations. Two molecules are linked by an N–H···O hydrogen bond across a center-of-inversion to form a dimer.

Experimental

Thiophene-2-carboxaldehyde (1.10 g, 10 mmol) in ethanol (20 ml) was added to a solution of the 2-thiohydantoin (1.16 g,10 mmol) in 20% ethanolic potassium hydroxide (20 ml). The mixture was stirred for 6 h. The mixture was then poured into water (200 ml). The precipitate that separated when this was acidified with 10% hydrochloric acid was collected and recrystallized from ethanol.

Refinement

H-atoms were placed in calculated positions [C—H 0.95 0.98 and N—H 0.88 Å; Uiso(H) 1.2Ueq(C,N)] and were included in the refinement in the riding model approximation.

The thienyl ring is disordered over two positions; pairs of bond distances were restrained to within 0.01 Å of each other, and the displacement parameters of the overlaying atoms were set to be equal. The major disorder component refined to 68.3 (3)%.

The intensity measurements are complete to 95%; however, they are 100% complete at a 2θ limit of 135 °.

Figures

Fig. 1.

Fig. 1.

Ansiotropic displacement ellipsoid plot (Barbour, 2001) of C8H6N2OS2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the thienyl ring is not shown.

Crystal data

C8H6N2OS2 Z = 2
Mr = 210.27 F(000) = 216
Triclinic, P1 Dx = 1.610 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 6.1022 (6) Å Cell parameters from 1386 reflections
b = 7.0806 (8) Å θ = 4.3–73.9°
c = 11.0425 (13) Å µ = 5.22 mm1
α = 72.582 (11)° T = 100 K
β = 76.116 (10)° Plate, yellow
γ = 75.640 (9)° 0.25 × 0.20 × 0.02 mm
V = 433.87 (8) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 1677 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 1519 reflections with I > 2σ(I)
Mirror Rint = 0.027
Detector resolution: 10.4041 pixels mm-1 θmax = 74.1°, θmin = 4.3°
ω scans h = −4→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −8→8
Tmin = 0.356, Tmax = 0.903 l = −11→13
2599 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0832P)2 + 0.1141P] where P = (Fo2 + 2Fc2)/3
1677 reflections (Δ/σ)max = 0.001
134 parameters Δρmax = 0.33 e Å3
6 restraints Δρmin = −0.44 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.82425 (8) 0.32671 (8) 0.07136 (5) 0.0212 (2)
S2 0.7731 (2) 0.1352 (3) 0.61560 (16) 0.0177 (3) 0.683 (3)
O1 0.0398 (3) 0.3931 (2) 0.34150 (16) 0.0214 (4)
N1 0.3814 (3) 0.3582 (3) 0.19518 (18) 0.0165 (4)
H1 0.3243 0.3831 0.1247 0.020*
N2 0.6346 (3) 0.2730 (3) 0.32364 (17) 0.0155 (4)
H2 0.7665 0.2340 0.3513 0.019*
C1 0.6123 (4) 0.3176 (3) 0.1982 (2) 0.0161 (4)
C2 0.2501 (4) 0.3552 (3) 0.3155 (2) 0.0165 (5)
C3 0.4173 (3) 0.2981 (3) 0.4032 (2) 0.0153 (4)
C4 0.3529 (4) 0.2791 (3) 0.5309 (2) 0.0172 (5)
H4 0.1912 0.3066 0.5592 0.021*
C5 0.484 (2) 0.225 (8) 0.6318 (12) 0.017 (2) 0.683 (3)
C6 0.388 (2) 0.234 (2) 0.7571 (9) 0.0201 (7) 0.683 (3)
H6 0.2288 0.2766 0.7856 0.024* 0.683 (3)
C7 0.5563 (7) 0.1717 (7) 0.8394 (5) 0.0218 (9) 0.683 (3)
H7 0.5228 0.1714 0.9280 0.026* 0.683 (3)
C8 0.7709 (9) 0.1127 (9) 0.7737 (4) 0.0227 (12) 0.683 (3)
H8 0.9045 0.0645 0.8122 0.027* 0.683 (3)
S2' 0.3819 (11) 0.2103 (10) 0.7847 (4) 0.0201 (7) 0.317
C5' 0.494 (4) 0.210 (17) 0.628 (2) 0.017 (2) 0.317
C6' 0.731 (3) 0.159 (3) 0.6117 (17) 0.0177 (3) 0.317
H6' 0.8277 0.1592 0.5304 0.021* 0.317 (3)
C7' 0.816 (3) 0.106 (2) 0.7307 (10) 0.0227 (12) 0.317
H7' 0.9731 0.0609 0.7379 0.027* 0.317 (3)
C8' 0.6415 (17) 0.1274 (17) 0.8312 (14) 0.0218 (9) 0.317
H8' 0.6628 0.0994 0.9177 0.026* 0.317 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0143 (3) 0.0310 (3) 0.0138 (3) −0.0020 (2) −0.0009 (2) −0.0024 (2)
S2 0.0127 (7) 0.0198 (7) 0.0184 (5) −0.0001 (5) −0.0058 (5) −0.0018 (4)
O1 0.0122 (7) 0.0315 (9) 0.0211 (9) −0.0048 (6) −0.0035 (6) −0.0068 (7)
N1 0.0139 (8) 0.0223 (9) 0.0131 (9) −0.0046 (7) −0.0041 (7) −0.0020 (7)
N2 0.0108 (8) 0.0213 (9) 0.0129 (9) −0.0026 (6) −0.0037 (7) −0.0013 (7)
C1 0.0149 (10) 0.0173 (9) 0.0154 (11) −0.0047 (7) −0.0035 (8) −0.0012 (8)
C2 0.0159 (10) 0.0186 (10) 0.0157 (11) −0.0062 (8) −0.0021 (8) −0.0035 (8)
C3 0.0137 (10) 0.0162 (9) 0.0153 (11) −0.0041 (7) −0.0034 (8) −0.0014 (8)
C4 0.0155 (10) 0.0182 (10) 0.0180 (11) −0.0057 (8) −0.0026 (8) −0.0034 (8)
C5 0.0229 (15) 0.014 (7) 0.0159 (13) −0.007 (2) −0.0053 (11) −0.0011 (14)
C6 0.0226 (7) 0.0262 (17) 0.011 (2) −0.0063 (8) −0.0009 (15) −0.0042 (16)
C7 0.034 (3) 0.020 (2) 0.0125 (14) −0.0076 (19) −0.004 (2) −0.0041 (14)
C8 0.031 (4) 0.0192 (13) 0.018 (3) −0.0072 (17) −0.012 (3) 0.003 (2)
S2' 0.0226 (7) 0.0262 (17) 0.011 (2) −0.0063 (8) −0.0009 (15) −0.0042 (16)
C5' 0.0229 (15) 0.014 (7) 0.0159 (13) −0.007 (2) −0.0053 (11) −0.0011 (14)
C6' 0.0127 (7) 0.0198 (7) 0.0184 (5) −0.0001 (5) −0.0058 (5) −0.0018 (4)
C7' 0.031 (4) 0.0192 (13) 0.018 (3) −0.0072 (17) −0.012 (3) 0.003 (2)
C8' 0.034 (3) 0.020 (2) 0.0125 (14) −0.0076 (19) −0.004 (2) −0.0041 (14)

Geometric parameters (Å, °)

S1—C1 1.660 (2) C5—C6 1.380 (13)
S2—C5 1.706 (9) C6—C7 1.433 (13)
S2—C8 1.702 (5) C6—H6 0.9500
O1—C2 1.224 (3) C7—C8 1.368 (5)
N1—C1 1.373 (3) C7—H7 0.9500
N1—C2 1.374 (3) C8—H8 0.9500
N1—H1 0.8800 S2'—C8' 1.693 (9)
N2—C1 1.358 (3) S2'—C5' 1.705 (17)
N2—C3 1.407 (3) C5'—C6' 1.378 (16)
N2—H2 0.8800 C6'—C7' 1.438 (15)
C2—C3 1.476 (3) C6'—H6' 0.9500
C3—C4 1.344 (3) C7'—C8' 1.356 (9)
C4—C5' 1.430 (8) C7'—H7' 0.9500
C4—C5 1.431 (5) C8'—H8' 0.9500
C4—H4 0.9500
C5—S2—C8 92.3 (3) C4—C5—S2 125.2 (7)
C1—N1—C2 111.81 (19) C5—C6—C7 112.6 (10)
C1—N1—H1 124.1 C5—C6—H6 123.7
C2—N1—H1 124.1 C7—C6—H6 123.7
C1—N2—C3 110.50 (17) C8—C7—C6 111.1 (7)
C1—N2—H2 124.8 C8—C7—H7 124.4
C3—N2—H2 124.8 C6—C7—H7 124.4
N2—C1—N1 107.33 (18) C7—C8—S2 112.7 (5)
N2—C1—S1 126.45 (16) C7—C8—H8 123.6
N1—C1—S1 126.20 (17) S2—C8—H8 123.6
O1—C2—N1 126.4 (2) C8'—S2'—C5' 93.5 (8)
O1—C2—C3 128.6 (2) C6'—C5'—C4 128.4 (16)
N1—C2—C3 104.99 (17) C6'—C5'—S2' 109.6 (10)
C4—C3—N2 132.2 (2) C4—C5'—S2' 121.5 (14)
C4—C3—C2 122.56 (19) C5'—C6'—C7' 113.2 (14)
N2—C3—C2 105.19 (18) C5'—C6'—H6' 123.4
C3—C4—C5' 128.4 (9) C7'—C6'—H6' 123.4
C3—C4—C5 131.6 (5) C8'—C7'—C6' 111.3 (16)
C3—C4—H4 114.2 C8'—C7'—H7' 124.4
C5'—C4—H4 117.3 C6'—C7'—H7' 124.4
C5—C4—H4 114.2 C7'—C8'—S2' 112.2 (13)
C6—C5—C4 123.6 (9) C7'—C8'—H8' 123.9
C6—C5—S2 111.2 (6) S2'—C8'—H8' 123.9
C3—N2—C1—N1 −4.2 (2) O1—C2—C3—C4 0.3 (3)
C3—N2—C1—S1 174.52 (16) N1—C2—C3—C4 −179.96 (19)
C2—N1—C1—N2 4.3 (2) O1—C2—C3—N2 −179.7 (2)
C2—N1—C1—S1 −174.39 (16) N1—C2—C3—N2 0.1 (2)
C1—N1—C2—O1 177.1 (2) C6—C7—C8—S2 1.0 (8)
C1—N1—C2—C3 −2.7 (2) C5—S2—C8—C7 0.0 (18)
C1—N2—C3—C4 −177.4 (2) C6'—C7'—C8'—S2' −0.1 (18)
C1—N2—C3—C2 2.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.88 2.20 2.873 (2) 133

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5612).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Chowdhry, M. M., Mingos, D. M. P., White, A. J. P. & Williams, D. W. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3495–3504.
  4. Książek, W., Kieć-Kononowicz, K. & Karolak-Wojciechowska, J. (2009). J. Mol. Struct. 921, 109–113.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033034/bt5612sup1.cif

e-67-o2429-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033034/bt5612Isup2.hkl

e-67-o2429-Isup2.hkl (82.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033034/bt5612Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES