Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):m1310–m1311. doi: 10.1107/S1600536811034337

A one-dimensional triaqua­europium(III)–1H,3H-benzimidazol-3-ium-5,6-dicarboxyl­ate–sulfate polymeric structure

Xia Cai a, Jing-Jun Lin a, Hao-Zhao Chen a, Lai-Chen Chen a, Rong-Hua Zeng a,b,*
PMCID: PMC3200740  PMID: 22058892

Abstract

In the title coordination polymer, catena-poly[[[triaqua­europium(III)]-bis­(μ-1H,3H-benzimidazol-3-ium-5,6-dicarb­oxyl­ato-κ3 O 5,O 5′:O 6)-[triaqua­europium(III)]-di-μ-sulfato-κ3 O:O,O′;κ3 O,O′:O′] hexahydrate], [Eu2(C9H5N2O4)2(SO4)2(H2O)6]·6H2O}n, the 1H,3H-benzimidazol-3-ium-5,6-dicarb­oxy­l­ate ligand is protonated at the imidazole group (H2bdc). The EuIII ion is coordinated by nine O atoms from two H2bdc ligands, two sulfate anions and three water mol­ecules, displaying a bicapped trigonal prismatic geometry. The carboxyl­ate groups of the H2bdc ligands and the sulfate anions link the EuIII ions, forming a chain along [010]. These chains are further connected by N—H⋯O and O—H⋯O hydrogen bonds and π–π inter­actions between the imidazole and benzene rings [centroid–centroid distances = 3.997 (4), 3.829 (4) and 3.573 (4) Å] into a three-dimensional supra­molecular network.

Related literature

For background to 1H-benzimidazole-5,6-dicarboxyl­ate complexes, see: Wang et al. (2010); Wei et al. (2008); Xie et al. (2010); Yao et al. (2008).graphic file with name e-67-m1310-scheme1.jpg

Experimental

Crystal data

  • [Eu2(C9H5N2O4)2(SO4)2(H2O)6]·6H2O

  • M r = 1122.58

  • Triclinic, Inline graphic

  • a = 7.1261 (16) Å

  • b = 9.581 (2) Å

  • c = 12.424 (3) Å

  • α = 100.496 (3)°

  • β = 98.060 (3)°

  • γ = 94.979 (3)°

  • V = 820.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.03 mm−1

  • T = 298 K

  • 0.30 × 0.26 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.310, T max = 0.446

  • 4076 measured reflections

  • 2841 independent reflections

  • 2669 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.097

  • S = 1.02

  • 2841 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.82 e Å−3

  • Δρmin = −2.51 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811034337/hy2456sup1.cif

e-67-m1310-sup1.cif (18.6KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O4i 0.84 1.90 2.717 (6) 165
O1W—H2W⋯O7ii 0.84 2.24 3.049 (6) 163
O2W—H3W⋯O5ii 0.84 1.96 2.775 (6) 162
O2W—H4W⋯O3iii 0.85 1.85 2.659 (6) 159
O3W—H5W⋯O4Wiii 0.84 2.07 2.810 (6) 146
O3W—H6W⋯O2iv 0.85 2.10 2.864 (6) 149
O4W—H7W⋯O5ii 0.86 2.34 3.045 (6) 139
O4W—H8W⋯O1 0.84 2.04 2.869 (6) 168
O5W—H9W⋯O6W 0.84 2.03 2.864 (8) 171
O5W—H10W⋯O6v 0.84 2.01 2.790 (7) 154
O6W—H11W⋯O6vi 0.84 2.37 3.165 (8) 158
O6W—H12W⋯O5ii 0.85 2.20 2.895 (7) 139
O6W—H12W⋯O1W 0.85 2.46 3.060 (7) 129
N1—H1A⋯O5Wvii 0.86 (8) 1.96 (8) 2.752 (8) 153 (7)
N1—H1A⋯O4Wvii 0.86 (8) 2.48 (8) 2.989 (7) 119 (6)
N2—H2⋯O6Wviii 0.86 1.91 2.734 (7) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

The authors acknowledge the Undergraduates’ Innovating Experimentation Project of Guangdong Province, the Undergraduates’ Innovating Experimentation Project of South China Normal University and the Students’ Extracurricular Scientific Research Project of South China Normal University for supporting this work.

supplementary crystallographic information

Comment

In recent years, research on coordination polymers has made considerable progress in the fields of supramolecular chemistry and crystal engineering, because of their intriguing structural motifs and functional properties, such as molecular adsorption, magnetism and luminescence. Ligands play a key role in the construction of coordination polymers with fascinating topology, intriguing architectures and useful physical-chemical properties. Benzimidazole-5,6-dicarboxylic acid (H3bdc) is a potential bifunctional ligand with carboxylate and N-donor functional groups and has been used to prepare such metal-organic complexes in possession of multidimensional networks and interesting properties (Wang et al., 2010; Wei et al., 2008; Xie et al., 2010; Yao et al., 2008). Recently, we obtained the title coordination polymer, which was synthesized by the hydrothermal reaction of Eu2O3 with H3bdc in an aqueous solution.

The title compound has a polymeric chain architecture. As shown in Fig. 1, the EuIII ion is in a bicapped trigonal-prismatic geometry, defined by nine O atoms from two 1H,3H-benzimidazol-3-ium-5,6-dicarboxylate ligands (H2bdc), which are protonated at the imidazole groups, two sulfate anions and three water molecules. The H2bdc ligands and sulfate anions link the EuIII ions into a chain along [0 1 0] (Fig. 2). The adjacent Eu···Eu separations are 4.272 (4) and 6.663 (5) Å. The Eu—O bond lengths range from 2.376 (4) to 2.610 (4) Å and O—Eu—O bond angles vary from 52.01 (1) to 143.68 (1) °. The chains are further connected by N—H···O and O—H···O hydrogen bonds (Table 1) and π–π interactions between the imidazole and benzene rings [centroid–centroid distances = 3.997 (4), 3.829 (4) and 3.573 (4) Å] into a three-dimensional supramolecular network.

Experimental

A mixture of Eu2O3 (0.352 g, 1 mmol), H3bdc (0.206 g, 1 mmol), water (10 ml) in the presence of H2SO4 (0.038 g, 0.385 mmol) was stirred vigorously for 30 min and then sealed in a 20 ml Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 443 K for 3 days, and then cooled to room temperature at 5 K h-1. Colorless block crystals of the title compound were obtained.

Refinement

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O—H = 0.84 and H···H = 1.35 Å, and with Uiso(H) = 1.5Ueq(O). H atoms bound to C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). H1A atom attached to N1 was refined with Uiso(H) = 0.035 Å2. The highest residual electron density was found at 1.00 Å from Eu1 atom and the deepest hole at 0.97 Å from Eu1 atom.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 2-x, -y, -z; (ii) 2-x, 1-y, -z.]

Fig. 2.

Fig. 2.

A view of the chain structure along [0 1 0].

Crystal data

[Eu2(C9H5N2O4)2(SO4)2(H2O)6]·6H2O Z = 1
Mr = 1122.58 F(000) = 552
Triclinic, P1 Dx = 2.273 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1261 (16) Å Cell parameters from 3240 reflections
b = 9.581 (2) Å θ = 2.5–25.2°
c = 12.424 (3) Å µ = 4.03 mm1
α = 100.496 (3)° T = 298 K
β = 98.060 (3)° Block, colorless
γ = 94.979 (3)° 0.30 × 0.26 × 0.20 mm
V = 820.3 (3) Å3

Data collection

Bruker APEXII CCD diffractometer 2841 independent reflections
Radiation source: fine-focus sealed tube 2669 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −8→8
Tmin = 0.310, Tmax = 0.446 k = −10→11
4076 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0656P)2 + 2.2735P] where P = (Fo2 + 2Fc2)/3
2841 reflections (Δ/σ)max < 0.001
248 parameters Δρmax = 1.82 e Å3
0 restraints Δρmin = −2.51 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Eu1 0.82011 (3) 0.30949 (3) −0.00038 (2) 0.01547 (13)
S3 0.7557 (2) 0.48078 (15) −0.19659 (11) 0.0178 (3)
O1 0.8381 (6) 0.2686 (5) 0.1916 (3) 0.0245 (9)
O2 1.0266 (6) 0.1509 (4) 0.0920 (3) 0.0235 (9)
O7 0.6411 (6) 0.3533 (5) −0.1756 (3) 0.0255 (9)
O8 0.9029 (5) 0.5245 (4) −0.0939 (3) 0.0197 (8)
O5 0.6331 (6) 0.5948 (5) −0.2072 (3) 0.0274 (9)
O6 0.8483 (7) 0.4467 (5) −0.2935 (3) 0.0286 (10)
N1 1.3014 (7) −0.0260 (6) 0.5455 (4) 0.0249 (11)
N2 1.2981 (7) 0.2039 (6) 0.5675 (4) 0.0251 (11)
H2 1.3174 0.2932 0.5979 0.030*
C1 0.9614 (8) 0.1832 (6) 0.1807 (5) 0.0190 (12)
C2 1.0383 (8) 0.1201 (6) 0.2791 (5) 0.0194 (12)
C3 1.0338 (8) −0.0312 (6) 0.2662 (4) 0.0164 (11)
C5 1.1219 (8) −0.0927 (6) 0.3485 (5) 0.0198 (12)
H5 1.1239 −0.1911 0.3393 0.024*
C6 1.2079 (8) −0.0005 (6) 0.4462 (5) 0.0218 (12)
C7 1.2050 (8) 0.1468 (6) 0.4603 (5) 0.0213 (12)
C8 1.3518 (9) 0.0977 (7) 0.6146 (5) 0.0274 (14)
H8 1.4162 0.1086 0.6866 0.033*
C9 1.1232 (8) 0.2109 (6) 0.3771 (4) 0.0189 (11)
H9 1.1250 0.3095 0.3864 0.023*
O4W 0.5121 (7) 0.1310 (5) 0.2584 (4) 0.0352 (11)
H8W 0.6008 0.1653 0.2294 0.053*
H7W 0.4457 0.2009 0.2736 0.053*
O6W 0.7298 (9) 0.5166 (6) 0.3452 (4) 0.0439 (13)
H11W 0.8442 0.5054 0.3395 0.066*
H12W 0.6655 0.4779 0.2826 0.09 (4)*
O5W 0.6913 (11) 0.3173 (6) 0.4890 (5) 0.0644 (19)
H9W 0.6934 0.3808 0.4506 0.097*
H10W 0.7710 0.3559 0.5453 0.097*
O3W 0.7114 (6) 0.0596 (4) −0.0781 (4) 0.0283 (10)
H5W 0.6097 0.0179 −0.1180 0.042*
H6W 0.7713 −0.0084 −0.0605 0.042*
O1W 0.7080 (6) 0.5224 (4) 0.0984 (4) 0.0266 (9)
H2W 0.6011 0.5504 0.1051 0.040*
H1W 0.7804 0.5996 0.1181 0.040*
O2W 0.4946 (6) 0.2615 (5) 0.0214 (4) 0.0308 (10)
H4W 0.4110 0.1952 −0.0161 0.046*
H3W 0.4346 0.3063 0.0678 0.046*
C4 0.9079 (8) −0.1258 (6) 0.1673 (4) 0.0179 (11)
O4 0.9655 (6) −0.2426 (4) 0.1255 (3) 0.0226 (9)
O3 0.7505 (6) −0.0878 (5) 0.1382 (4) 0.0290 (10)
H1A 1.323 (11) −0.109 (9) 0.557 (6) 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Eu1 0.01833 (18) 0.01343 (19) 0.01383 (18) 0.00052 (11) 0.00124 (11) 0.00220 (12)
S3 0.0222 (7) 0.0163 (7) 0.0138 (6) −0.0006 (5) 0.0006 (5) 0.0030 (5)
O1 0.031 (2) 0.026 (2) 0.018 (2) 0.0101 (18) 0.0039 (17) 0.0053 (17)
O2 0.032 (2) 0.022 (2) 0.018 (2) 0.0070 (18) 0.0074 (17) 0.0046 (17)
O7 0.027 (2) 0.021 (2) 0.024 (2) −0.0095 (17) −0.0053 (17) 0.0065 (17)
O8 0.021 (2) 0.020 (2) 0.0140 (19) −0.0041 (16) −0.0042 (15) 0.0017 (16)
O5 0.034 (2) 0.023 (2) 0.024 (2) 0.0087 (18) −0.0010 (18) 0.0051 (18)
O6 0.042 (3) 0.025 (2) 0.018 (2) 0.0020 (19) 0.0083 (18) 0.0016 (17)
N1 0.029 (3) 0.027 (3) 0.021 (3) 0.005 (2) 0.004 (2) 0.011 (2)
N2 0.033 (3) 0.022 (3) 0.016 (2) −0.003 (2) 0.002 (2) −0.001 (2)
C1 0.026 (3) 0.013 (3) 0.018 (3) 0.001 (2) 0.001 (2) 0.004 (2)
C2 0.018 (3) 0.020 (3) 0.020 (3) 0.000 (2) 0.004 (2) 0.004 (2)
C3 0.019 (3) 0.013 (3) 0.017 (3) −0.001 (2) 0.003 (2) 0.002 (2)
C5 0.024 (3) 0.013 (3) 0.024 (3) 0.002 (2) 0.007 (2) 0.002 (2)
C6 0.024 (3) 0.022 (3) 0.020 (3) 0.000 (2) 0.005 (2) 0.007 (2)
C7 0.025 (3) 0.022 (3) 0.015 (3) −0.002 (2) 0.005 (2) 0.002 (2)
C8 0.028 (3) 0.039 (4) 0.013 (3) 0.001 (3) −0.002 (2) 0.007 (3)
C9 0.025 (3) 0.015 (3) 0.016 (3) −0.001 (2) 0.005 (2) 0.002 (2)
O4W 0.035 (2) 0.037 (3) 0.039 (3) 0.003 (2) 0.012 (2) 0.014 (2)
O6W 0.067 (4) 0.036 (3) 0.024 (3) 0.016 (3) −0.003 (2) −0.002 (2)
O5W 0.123 (6) 0.031 (3) 0.033 (3) 0.003 (3) −0.006 (3) 0.007 (2)
O3W 0.030 (2) 0.019 (2) 0.032 (2) −0.0014 (18) −0.0022 (18) 0.0008 (18)
O1W 0.024 (2) 0.014 (2) 0.043 (3) 0.0046 (16) 0.0111 (19) 0.0037 (18)
O2W 0.023 (2) 0.035 (3) 0.028 (2) −0.0041 (18) 0.0029 (18) −0.0072 (19)
C4 0.024 (3) 0.015 (3) 0.015 (3) −0.003 (2) 0.007 (2) 0.002 (2)
O4 0.030 (2) 0.019 (2) 0.019 (2) 0.0003 (17) 0.0081 (17) −0.0012 (16)
O3 0.024 (2) 0.025 (2) 0.032 (2) 0.0055 (18) −0.0039 (18) −0.0061 (19)

Geometric parameters (Å, °)

Eu1—O4i 2.374 (4) C3—C5 1.375 (8)
Eu1—O2W 2.387 (4) C3—C4 1.510 (8)
Eu1—O3W 2.427 (4) C5—C6 1.392 (8)
Eu1—O8ii 2.434 (4) C5—H5 0.9300
Eu1—O1W 2.439 (4) C6—C7 1.392 (9)
Eu1—O1 2.474 (4) C7—C9 1.381 (8)
Eu1—O2 2.518 (4) C8—H8 0.9300
Eu1—O8 2.607 (4) C9—H9 0.9300
S3—O6 1.451 (4) O4W—H8W 0.8415
S3—O5 1.470 (4) O4W—H7W 0.8612
S3—O7 1.493 (4) O6W—H11W 0.8423
S3—O8 1.502 (4) O6W—H12W 0.8471
O1—C1 1.256 (7) O5W—H9W 0.8390
O2—C1 1.252 (7) O5W—H10W 0.8403
N1—C8 1.319 (8) O3W—H5W 0.8408
N1—C6 1.390 (8) O3W—H6W 0.8534
N1—H1A 0.86 (8) O1W—H2W 0.8393
N2—C8 1.322 (8) O1W—H1W 0.8396
N2—C7 1.392 (7) O2W—H4W 0.8507
N2—H2 0.8600 O2W—H3W 0.8434
C1—C2 1.517 (8) C4—O3 1.235 (7)
C2—C9 1.387 (8) C4—O4 1.272 (7)
C2—C3 1.426 (8)
O4i—Eu1—O2W 140.91 (14) C8—N1—C6 108.3 (5)
O4i—Eu1—O3W 76.22 (15) C8—N1—H1A 127 (5)
O2W—Eu1—O3W 71.09 (15) C6—N1—H1A 124 (5)
O4i—Eu1—O8ii 81.63 (13) C8—N2—C7 108.3 (5)
O2W—Eu1—O8ii 137.26 (14) C8—N2—H2 125.8
O3W—Eu1—O8ii 143.77 (14) C7—N2—H2 125.8
O4i—Eu1—O1W 140.46 (14) O2—C1—O1 122.2 (5)
O2W—Eu1—O1W 69.33 (15) O2—C1—C2 118.8 (5)
O3W—Eu1—O1W 140.36 (14) O1—C1—C2 119.0 (5)
O8ii—Eu1—O1W 71.68 (14) C9—C2—C3 121.4 (5)
O4i—Eu1—O1 126.79 (14) C9—C2—C1 119.3 (5)
O2W—Eu1—O1 75.86 (15) C3—C2—C1 119.1 (5)
O3W—Eu1—O1 92.05 (14) C5—C3—C2 121.3 (5)
O8ii—Eu1—O1 78.65 (13) C5—C3—C4 119.1 (5)
O1W—Eu1—O1 76.39 (14) C2—C3—C4 119.1 (5)
O4i—Eu1—O2 75.47 (14) C3—C5—C6 116.7 (5)
O2W—Eu1—O2 111.08 (15) C3—C5—H5 121.6
O3W—Eu1—O2 69.40 (14) C6—C5—H5 121.6
O8ii—Eu1—O2 77.54 (13) N1—C6—C5 131.7 (6)
O1W—Eu1—O2 124.10 (14) N1—C6—C7 106.4 (5)
O1—Eu1—O2 52.20 (13) C5—C6—C7 121.8 (5)
O4i—Eu1—O8 71.41 (13) C9—C7—N2 131.6 (6)
O2W—Eu1—O8 116.64 (14) C9—C7—C6 122.3 (5)
O3W—Eu1—O8 131.57 (13) N2—C7—C6 106.2 (5)
O8ii—Eu1—O8 64.15 (14) N1—C8—N2 110.7 (5)
O1W—Eu1—O8 70.87 (13) N1—C8—H8 124.6
O1—Eu1—O8 136.26 (13) N2—C8—H8 124.6
O2—Eu1—O8 131.95 (13) C7—C9—C2 116.4 (5)
O4i—Eu1—Eu1ii 73.90 (10) C7—C9—H9 121.8
O2W—Eu1—Eu1ii 133.79 (11) C2—C9—H9 121.8
O3W—Eu1—Eu1ii 149.81 (11) H8W—O4W—H7W 104.3
O8ii—Eu1—Eu1ii 33.30 (9) H11W—O6W—H12W 105.6
O1W—Eu1—Eu1ii 67.72 (10) H9W—O5W—H10W 101.4
O1—Eu1—Eu1ii 109.19 (10) Eu1—O3W—H5W 132.6
O2—Eu1—Eu1ii 106.55 (10) Eu1—O3W—H6W 122.9
O8—Eu1—Eu1ii 30.84 (8) H5W—O3W—H6W 104.1
O6—S3—O5 111.0 (3) Eu1—O1W—H2W 135.5
O6—S3—O7 112.3 (3) Eu1—O1W—H1W 120.5
O5—S3—O7 109.6 (3) H2W—O1W—H1W 101.5
O6—S3—O8 110.1 (3) Eu1—O2W—H4W 128.4
O5—S3—O8 110.2 (2) Eu1—O2W—H3W 128.4
O7—S3—O8 103.5 (2) H4W—O2W—H3W 103.2
C1—O1—Eu1 93.8 (3) O3—C4—O4 125.0 (5)
C1—O2—Eu1 91.8 (3) O3—C4—C3 116.9 (5)
S3—O8—Eu1ii 146.0 (2) O4—C4—C3 117.9 (5)
S3—O8—Eu1 97.84 (18) C4—O4—Eu1i 135.3 (4)
Eu1ii—O8—Eu1 115.85 (14)

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O4iii 0.84 1.90 2.717 (6) 165
O1W—H2W···O7iv 0.84 2.24 3.049 (6) 163
O2W—H3W···O5iv 0.84 1.96 2.775 (6) 162
O2W—H4W···O3v 0.85 1.85 2.659 (6) 159
O3W—H5W···O4Wv 0.84 2.07 2.810 (6) 146
O3W—H6W···O2i 0.85 2.10 2.864 (6) 149
O4W—H7W···O5iv 0.86 2.34 3.045 (6) 139
O4W—H8W···O1 0.84 2.04 2.869 (6) 168
O5W—H9W···O6W 0.84 2.03 2.864 (8) 171
O5W—H10W···O6vi 0.84 2.01 2.790 (7) 154
O6W—H11W···O6ii 0.84 2.37 3.165 (8) 158
O6W—H12W···O5iv 0.85 2.20 2.895 (7) 139
O6W—H12W···O1W 0.85 2.46 3.060 (7) 129
N1—H1A···O5Wvii 0.86 (8) 1.96 (8) 2.752 (8) 153 (7)
N1—H1A···O4Wvii 0.86 (8) 2.48 (8) 2.989 (7) 119 (6)
N2—H2···O6Wviii 0.86 1.91 2.734 (7) 161

Symmetry codes: (iii) x, y+1, z; (iv) −x+1, −y+1, −z; (v) −x+1, −y, −z; (i) −x+2, −y, −z; (vi) x, y, z+1; (ii) −x+2, −y+1, −z; (vii) −x+2, −y, −z+1; (viii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2456).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Wang, Z.-X., Wu, X.-F., Liu, H.-J., Shao, M., Xiao, H.-P. & Li, M.-X. (2010). CrystEngComm, 12, 1139–1146.
  7. Wei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087–2089.
  8. Xie, Y., Xing, Y.-H., Wang, Z., Zhao, H.-Y., Zeng, X.-Q., Ge, M.-F. & Niu, S.-Y. (2010). Inorg. Chim. Acta, 363, 918–924.
  9. Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299–2306.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811034337/hy2456sup1.cif

e-67-m1310-sup1.cif (18.6KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES