Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):m1264–m1265. doi: 10.1107/S1600536811032727

μ-Acetato-μ-(5-chloro-2-{1,3-bis[2-(5-chloro-2-oxidobenzylideneamino)ethyl]imidazolidin-2-yl}phenolato)-bis[methanolnickel(II)] methanol monosolvate monohydrate

Ahmed Raza Khan a, Yohannes Tesema a, Ray J Butcher a,*, Yilma Gultneh a
PMCID: PMC3200742  PMID: 22064868

Abstract

The crystal structure shows that the title compound, [Ni2(CH3CO2)(C27H24Cl3N4O3)(CH4O)2]·CH3OH·H2O, con­tains [Ni2 L(OAc)(CH3OH)2] mol­ecules in the unit cell {H3 L = 5-chloro-2-{1,3-bis[2-(5-chloro-2-oxidobenzylideneimino)-ethyl]imidazolidin-2-yl}phenolate} with water and methanol as solvates. The title compound is a neutral dinuclear compound, in which the L 3− Schiff base acts as a hepta­dentate ligand, using each one of its N2O compartments to coordinate a nickel atom. The acetate anion bridges the two nickel atoms via one O while the distorted octahedral coordination sphere for each nickel atom is completed by a coordinated methanol ligand. One of the coordinated methanol ligands is involved in an intra­molecular hydrogen bond to the uncoordinated O atom of the bridging acetate ligand while the other forms a hydrogen bond with the methanol solvate. The solvate water mol­ecule forms strong hydrogen bonds to both terminal phenolato O atoms. The methanol solvate mol­ecule also forms a hydrogen bond with the water solvate mol­ecule.

Related literature

For dinuclear nickel compounds containing ligands with a predefined ground state, see: Fondo et al. (2005, 2007, 2009); Fondo, Garcia-Deibe et al. (2006); Fondo, Ocampo et al. (2006); Lu et al. (2007); Paital et al. (2007, 2009). For density functional theory (DFT) calculations, see: Fondo et al. (2005).graphic file with name e-67-m1264-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C2H3O2)(C27H24Cl3N4O3)(CH4O)2]·CH4O·H2O

  • M r = 849.46

  • Orthorhombic, Inline graphic

  • a = 16.684 (2) Å

  • b = 16.042 (2) Å

  • c = 13.7868 (19) Å

  • V = 3690.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 173 K

  • 0.45 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.685, T max = 1.000

  • 23326 measured reflections

  • 8737 independent reflections

  • 7189 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.064

  • S = 0.97

  • 8737 reflections

  • 464 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983), 3935 Friedel pairs

  • Flack parameter: 0.017 (8)

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032727/jj2099sup1.cif

e-67-m1264-sup1.cif (36KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032727/jj2099Isup2.hkl

e-67-m1264-Isup2.hkl (427.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1MA—H1MK⋯O2AA 0.84 1.77 2.586 (3) 162
O1MA—H1MK⋯O1AA 0.84 2.66 3.029 (2) 108
O1W—H1W1⋯O1A 0.82 (2) 1.86 (2) 2.679 (3) 175 (4)
O1W—H1W2⋯O1B 0.81 (2) 1.91 (2) 2.708 (3) 174 (3)
O1M—H1M⋯O1Wi 0.84 1.74 2.577 (3) 170
O1MB—H1MJ⋯O1M 0.84 1.83 2.658 (3) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RJB wishes to acknowledge the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer. ARK and YT wish to acknowledge the Howard University Graduate School of Arts and Sciences for the award of a Teaching Assistanceship.

supplementary crystallographic information

Comment

Nickel complexes of the compartmental triprotic heptadentate ligand, 2-hydroxyphenyl)-1,3-bis[4-(2- hydroxyphenyl)-3-azabut- 3-enyl]-1,3-imidazolidine and its derivatives have been of interest for their ability to give rise to dinuclear compounds with a predefined ground state (Fondo et al., 2005, 2007, 2009; Fondo, Garcia-Deibe et al., 2006; Fondo, Ocampo et al., 2006; Lu et al., 2007; Paital, et al., 2007, 2009). Density functional theory (DFT) calculations demonstrated that the Schiff base provides an NCN bridge between the metal ions that helps to mediate the ferromagnetic exchange (Fondo, et al., 2005). Consequently, the use of suitable cross-linking ligands between the dinuclear units could be a route to produce complexes of higher nuclearity, with all of the unpaired electrons aligned parallel to each other. The type of complex obtained depends on the synthesis conditions as the coordination environment about the metals is usually completed by coordinating solvent molecules.

The crystal structure shows that C32H41Cl3N4Ni2O9, (I), contains [Ni2L(OAc)(CH3OH)2] molecules in the unit cell (H3L = 2-(5-chloro-2-hydroxyphenyl)-1,3-bis[4-(5-chloro-2- hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) with water and methanol as solvates. (I) is a neutral dinuclear compound, where the L3- Schiff base acts as a compartmental trianionic heptadentate ligand, using each one of its N2O compartments to coordinate a nickel atom. Thus, the metal atoms are joined to one terminal phenol oxygen (O1A, O1B), an iminic nitrogen (N1A, N1B), and an aminic nitrogen atom (N2A, N2B), with the aminic NCN group (N2A—C7—N2B) acting as a bridge between both nickel ions. In addition, the nickel centers are linked by the endogenous phenolate oxygen atom (O1) of the central ligand arm and by an exogenous bridging monodentate acetate group (O1AA). This gives rise to a nearly planar Ni2O2 metallacycle, with an intramolecular Ni—Ni distance of 3.1078 (6) Å. The coordination spheres of the nickel atoms are completed by methanol molecules. Therefore, the metal centers are hexacoordinated in a N2O4 environment, with an octahedral geometry. The Ni—O and Ni—N distances, as well as the angles about the metal atoms, show quite regular polyhedra around the central ions, with both the Ni—Ophenol—Ni and Ni—Oacetate—Ni angles being similar [97.98 (7)° and 97.37 (8)°, respectively]. There are similar structures reported in the literature which differ only in the nature of the coordinating solvent (H2O) and solvate molecules (H2O, CH3CN) in the lattice (Fondo, Ocampo et al., 2006).

One of the coordinated methanol ligands is involved in an intramolecular hydrogen bond to the uncoordinated O atom (O2AA) of the bridging acetate ligand while the other forms a hydrogen bond with the methanol solvate. The solvate water molecule forms strong hydrogen bonds to both O1A and O1B. The methanol solvate molecule also forms a hydrogen bond with the water solvate molecule.

Experimental

For the synthesis of the ligand (H3L) methanol solutions of triethylenetetramine and 5-chlorosalicylaldehyde were mixed in 1:3 mol ratio. After heating at 60° C for a few minutes, ether was added to this mixture, and the yellow crystals were separated, filtered and recrystallized from methanol solution. Mp 103–104° C. For synthesis of the complex, to a stirred methanol solution (25 ml) of [Ni(O2CCH3)2]4H2O (1.5 g, 2.67 mmol) was added 1.33 g (5.35 mmol) of the ligand H3L. Slow evaporation of the green filtrate overnight yielded green cystals suitable for X-ray analysis in 75% yield.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with an O—H distance of 0.84 Å and C—H distances of 0.95 - 0.99 Å [Uiso(H) = 1.2Ueq(OH, CH, CH~2~) [Uiso(H) = 1.5Ueq(CH3)]. Water H atoms were refined isotropically with O—H distances restrained to 0.82 Å and H—O—H angle to 104.5° with [Uiso(H) = 1.5Ueq(O)].

Figures

Fig. 1.

Fig. 1.

Diagram of C32H41Cl3N4Ni2O9, showing atom labeling. All H atoms except those attached to water, methanol and acetate are removed for clarity. Hydrogen bonds are shown by dashed lines.

Fig. 2.

Fig. 2.

The molecular packing for C32H41Cl3N4Ni2O9 viewed down the c axis. Hydrogen bonds are shown by dashed lines.

Crystal data

[Ni2(C2H3O2)(CH4O)2(C27H24Cl3N4O3)]·CH4O·H2O F(000) = 1760
Mr = 849.46 Dx = 1.529 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 4340 reflections
a = 16.684 (2) Å θ = 2.3–27.1°
b = 16.042 (2) Å µ = 1.29 mm1
c = 13.7868 (19) Å T = 173 K
V = 3690.1 (9) Å3 Chunk, green
Z = 4 0.45 × 0.40 × 0.20 mm

Data collection

Bruker SMART 1000 CCD area detector diffractometer 8737 independent reflections
Radiation source: fine-focus sealed tube 7189 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −15→22
Tmin = 0.685, Tmax = 1.000 k = −18→21
23326 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0269P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.001
8737 reflections Δρmax = 0.34 e Å3
464 parameters Δρmin = −0.23 e Å3
4 restraints Absolute structure: Flack (1983), no. of Friedel pairs?
Primary atom site location: structure-invariant direct methods Flack parameter: 0.017 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1A 0.030884 (18) 0.86755 (2) 0.49661 (3) 0.02591 (8)
Ni1B 0.038838 (18) 0.67711 (2) 0.45640 (2) 0.02566 (8)
Cl −0.00326 (4) 0.73145 (5) 0.96738 (6) 0.04296 (17)
Cl1A −0.31065 (5) 1.15093 (5) 0.53792 (6) 0.0493 (2)
Cl1B −0.25128 (5) 0.34351 (5) 0.37379 (8) 0.0560 (2)
O1 −0.02255 (10) 0.75823 (11) 0.54367 (13) 0.0258 (4)
O1A −0.06659 (10) 0.90623 (11) 0.42579 (13) 0.0305 (4)
O1B −0.05824 (11) 0.64873 (11) 0.37941 (14) 0.0308 (4)
O1AA 0.05959 (11) 0.78731 (10) 0.38367 (13) 0.0280 (4)
O2AA 0.10906 (13) 0.87725 (13) 0.27867 (15) 0.0471 (5)
O1MA 0.09955 (10) 0.96620 (11) 0.43472 (14) 0.0371 (5)
H1MK 0.1099 0.9446 0.3806 0.044*
O1MB 0.11323 (11) 0.60759 (11) 0.35587 (14) 0.0344 (4)
H1MJ 0.1542 0.6274 0.3290 0.041*
O1W −0.13355 (13) 0.78777 (13) 0.31538 (18) 0.0484 (6)
H1W1 −0.1106 (19) 0.8238 (14) 0.347 (3) 0.073*
H1W2 −0.113 (2) 0.7444 (12) 0.332 (3) 0.073*
O1M 0.22768 (12) 0.67412 (14) 0.24637 (16) 0.0470 (5)
H1M 0.2703 0.6909 0.2723 0.056*
N1A 0.00600 (13) 0.94058 (13) 0.60946 (16) 0.0295 (5)
N2A 0.13725 (12) 0.83765 (13) 0.57830 (16) 0.0278 (5)
N1B 0.02800 (13) 0.57248 (14) 0.53500 (17) 0.0309 (5)
N2B 0.14429 (12) 0.69703 (13) 0.54912 (15) 0.0261 (5)
C1 −0.01809 (15) 0.74633 (16) 0.63923 (19) 0.0256 (6)
C2 −0.08666 (16) 0.73573 (16) 0.6957 (2) 0.0311 (6)
H2A −0.1376 0.7333 0.6650 0.037*
C3 −0.08225 (16) 0.72863 (17) 0.7957 (2) 0.0341 (7)
H3A −0.1296 0.7217 0.8330 0.041*
C4 −0.00883 (18) 0.73162 (17) 0.84032 (19) 0.0319 (6)
C5 0.06045 (16) 0.73903 (17) 0.7878 (2) 0.0302 (6)
H5A 0.1109 0.7397 0.8198 0.036*
C6 0.05649 (16) 0.74559 (17) 0.6871 (2) 0.0272 (6)
C7 0.13219 (15) 0.75677 (16) 0.63004 (19) 0.0284 (6)
H7A 0.1788 0.7524 0.6754 0.034*
C8 0.21070 (15) 0.82688 (16) 0.5174 (2) 0.0346 (7)
H8A 0.2591 0.8455 0.5529 0.041*
H8B 0.2063 0.8590 0.4564 0.041*
C9 0.21425 (15) 0.73351 (16) 0.4968 (2) 0.0341 (6)
H9A 0.2102 0.7227 0.4263 0.041*
H9B 0.2651 0.7094 0.5211 0.041*
C1A −0.11614 (15) 1.00242 (15) 0.5459 (2) 0.0283 (6)
C2A −0.11907 (14) 0.96151 (15) 0.4553 (2) 0.0268 (5)
C3A −0.18261 (15) 0.98341 (15) 0.3918 (2) 0.0298 (6)
H3AA −0.1859 0.9572 0.3302 0.036*
C4A −0.23901 (15) 1.04105 (16) 0.4167 (2) 0.0327 (6)
H4AA −0.2806 1.0548 0.3724 0.039*
C5A −0.23586 (15) 1.07982 (15) 0.5068 (2) 0.0336 (6)
C6A −0.17552 (16) 1.06147 (16) 0.5699 (2) 0.0346 (7)
H6AA −0.1734 1.0889 0.6309 0.041*
C7A −0.05340 (16) 0.99102 (17) 0.6167 (2) 0.0330 (6)
H7AA −0.0563 1.0239 0.6740 0.040*
C8A 0.06633 (17) 0.93926 (18) 0.6871 (2) 0.0359 (7)
H8AA 0.0496 0.9004 0.7391 0.043*
H8AB 0.0722 0.9956 0.7155 0.043*
C9A 0.14602 (16) 0.91075 (17) 0.6434 (2) 0.0360 (7)
H9AA 0.1698 0.9575 0.6063 0.043*
H9AB 0.1834 0.8964 0.6966 0.043*
C1B −0.08523 (15) 0.51394 (16) 0.4483 (2) 0.0331 (6)
C2B −0.10109 (15) 0.58068 (16) 0.3839 (2) 0.0283 (6)
C3B −0.16738 (16) 0.57244 (18) 0.3199 (2) 0.0357 (7)
H3BA −0.1803 0.6171 0.2774 0.043*
C4B −0.21304 (17) 0.50132 (17) 0.3181 (2) 0.0380 (7)
H4BA −0.2572 0.4972 0.2749 0.046*
C5B −0.19473 (17) 0.43556 (17) 0.3792 (2) 0.0399 (7)
C6B −0.13271 (16) 0.44085 (17) 0.4433 (2) 0.0383 (7)
H6BA −0.1212 0.3952 0.4849 0.046*
C7B −0.02163 (16) 0.51340 (17) 0.5188 (2) 0.0341 (7)
H7BA −0.0160 0.4645 0.5571 0.041*
C8B 0.08865 (17) 0.56281 (17) 0.6114 (2) 0.0350 (7)
H8BA 0.1020 0.5031 0.6198 0.042*
H8BB 0.0676 0.5842 0.6737 0.042*
C9B 0.16279 (17) 0.61102 (17) 0.5827 (2) 0.0352 (7)
H9BA 0.1995 0.6141 0.6390 0.042*
H9BB 0.1908 0.5807 0.5302 0.042*
C1AA 0.07482 (17) 0.81086 (19) 0.2963 (2) 0.0342 (7)
C2AA 0.04755 (19) 0.7573 (2) 0.2136 (2) 0.0423 (8)
H2AA 0.0918 0.7499 0.1676 0.064*
H2AB 0.0023 0.7841 0.1808 0.064*
H2AC 0.0307 0.7028 0.2384 0.064*
C1M 0.2436 (2) 0.6485 (2) 0.1504 (3) 0.0623 (10)
H1M1 0.3016 0.6431 0.1412 0.093*
H1M2 0.2224 0.6900 0.1050 0.093*
H1M3 0.2178 0.5946 0.1383 0.093*
C1MA 0.06774 (19) 1.04743 (19) 0.4206 (3) 0.0523 (9)
H1MA 0.0979 1.0758 0.3692 0.078*
H1MB 0.0721 1.0793 0.4810 0.078*
H1MC 0.0112 1.0433 0.4017 0.078*
C1MB 0.08373 (18) 0.53940 (19) 0.3000 (2) 0.0424 (8)
H1MD 0.1270 0.5171 0.2595 0.064*
H1ME 0.0397 0.5585 0.2586 0.064*
H1MF 0.0642 0.4956 0.3436 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1A 0.02723 (16) 0.02880 (17) 0.02170 (16) 0.00058 (14) −0.00341 (15) −0.00147 (15)
Ni1B 0.02737 (16) 0.02862 (16) 0.02098 (16) 0.00225 (14) −0.00269 (16) −0.00049 (15)
Cl 0.0478 (4) 0.0595 (4) 0.0215 (3) 0.0089 (4) 0.0037 (3) 0.0022 (3)
Cl1A 0.0481 (4) 0.0472 (4) 0.0526 (5) 0.0197 (4) −0.0015 (4) −0.0020 (4)
Cl1B 0.0358 (4) 0.0433 (4) 0.0888 (7) −0.0108 (4) 0.0096 (4) −0.0133 (4)
O1 0.0267 (10) 0.0302 (9) 0.0206 (9) 0.0003 (8) −0.0029 (8) 0.0008 (8)
O1A 0.0322 (10) 0.0323 (10) 0.0270 (11) 0.0054 (8) −0.0074 (8) −0.0037 (8)
O1B 0.0334 (10) 0.0295 (9) 0.0294 (11) −0.0008 (8) −0.0069 (8) −0.0003 (8)
O1AA 0.0337 (10) 0.0306 (9) 0.0196 (10) −0.0001 (8) 0.0003 (8) 0.0006 (8)
O2AA 0.0664 (15) 0.0415 (12) 0.0334 (12) −0.0027 (11) 0.0092 (11) 0.0108 (10)
O1MA 0.0406 (11) 0.0353 (11) 0.0353 (13) −0.0030 (9) 0.0002 (9) 0.0039 (9)
O1MB 0.0335 (11) 0.0397 (10) 0.0300 (11) 0.0022 (9) −0.0006 (9) −0.0076 (9)
O1W 0.0473 (13) 0.0372 (12) 0.0608 (16) 0.0120 (10) −0.0267 (11) −0.0160 (11)
O1M 0.0363 (12) 0.0700 (15) 0.0346 (13) −0.0094 (11) −0.0052 (10) −0.0008 (11)
N1A 0.0333 (12) 0.0296 (12) 0.0255 (13) 0.0019 (10) −0.0059 (10) −0.0050 (10)
N2A 0.0247 (11) 0.0330 (12) 0.0257 (12) −0.0012 (10) −0.0023 (9) −0.0010 (10)
N1B 0.0338 (12) 0.0326 (12) 0.0263 (12) 0.0042 (10) −0.0010 (10) −0.0002 (10)
N2B 0.0255 (11) 0.0323 (11) 0.0206 (12) 0.0051 (9) −0.0001 (9) −0.0010 (9)
C1 0.0293 (14) 0.0247 (12) 0.0227 (14) 0.0017 (11) −0.0012 (11) −0.0026 (11)
C2 0.0287 (15) 0.0358 (15) 0.0289 (16) 0.0010 (12) −0.0007 (12) 0.0024 (12)
C3 0.0290 (15) 0.0413 (16) 0.0320 (17) 0.0020 (12) 0.0042 (13) 0.0041 (13)
C4 0.0412 (16) 0.0365 (16) 0.0181 (14) 0.0091 (13) 0.0007 (12) 0.0001 (11)
C5 0.0280 (14) 0.0402 (16) 0.0223 (14) 0.0040 (12) −0.0031 (12) −0.0012 (12)
C6 0.0281 (14) 0.0307 (14) 0.0228 (14) 0.0042 (12) −0.0011 (11) −0.0021 (12)
C7 0.0263 (14) 0.0372 (15) 0.0217 (14) 0.0022 (12) −0.0042 (11) −0.0019 (12)
C8 0.0244 (13) 0.0456 (16) 0.0337 (18) −0.0011 (12) 0.0012 (12) 0.0048 (13)
C9 0.0237 (13) 0.0536 (18) 0.0249 (14) 0.0019 (12) 0.0024 (12) −0.0007 (14)
C1A 0.0302 (14) 0.0252 (13) 0.0295 (15) 0.0012 (11) −0.0041 (12) −0.0014 (12)
C2A 0.0269 (13) 0.0256 (12) 0.0280 (13) −0.0022 (10) −0.0035 (12) 0.0038 (12)
C3A 0.0312 (14) 0.0328 (14) 0.0254 (15) −0.0012 (12) −0.0029 (12) 0.0011 (12)
C4A 0.0246 (14) 0.0362 (15) 0.0374 (17) −0.0013 (12) −0.0065 (12) 0.0085 (13)
C5A 0.0324 (14) 0.0286 (14) 0.0397 (18) 0.0040 (11) −0.0002 (14) −0.0011 (13)
C6A 0.0406 (16) 0.0329 (15) 0.0303 (17) 0.0025 (13) −0.0007 (13) −0.0050 (12)
C7A 0.0401 (16) 0.0323 (14) 0.0265 (15) 0.0009 (13) −0.0044 (13) −0.0066 (12)
C8A 0.0397 (16) 0.0371 (16) 0.0308 (16) 0.0035 (13) −0.0122 (13) −0.0061 (13)
C9A 0.0357 (15) 0.0368 (16) 0.0355 (18) −0.0012 (13) −0.0120 (13) −0.0046 (13)
C1B 0.0309 (14) 0.0307 (14) 0.0376 (17) 0.0024 (11) 0.0047 (13) −0.0024 (13)
C2B 0.0262 (13) 0.0328 (14) 0.0260 (15) 0.0024 (11) 0.0038 (11) −0.0063 (12)
C3B 0.0318 (15) 0.0375 (15) 0.0379 (18) 0.0038 (13) −0.0021 (13) −0.0084 (13)
C4B 0.0279 (15) 0.0436 (17) 0.0425 (19) −0.0006 (13) 0.0034 (13) −0.0130 (14)
C5B 0.0275 (15) 0.0362 (16) 0.056 (2) −0.0036 (12) 0.0103 (15) −0.0120 (15)
C6B 0.0369 (15) 0.0334 (15) 0.045 (2) 0.0000 (12) 0.0084 (15) −0.0007 (14)
C7B 0.0404 (17) 0.0310 (14) 0.0310 (17) 0.0032 (13) 0.0023 (12) 0.0020 (12)
C8B 0.0413 (16) 0.0318 (15) 0.0318 (17) 0.0087 (13) −0.0070 (14) 0.0043 (13)
C9B 0.0332 (16) 0.0406 (16) 0.0318 (16) 0.0087 (13) −0.0066 (12) −0.0021 (13)
C1AA 0.0337 (15) 0.0454 (17) 0.0234 (15) 0.0116 (13) 0.0003 (13) 0.0016 (13)
C2AA 0.0435 (19) 0.060 (2) 0.0235 (16) 0.0090 (16) −0.0042 (13) −0.0028 (15)
C1M 0.063 (2) 0.084 (3) 0.040 (2) −0.012 (2) 0.0005 (18) −0.007 (2)
C1MA 0.0531 (19) 0.0359 (17) 0.068 (3) −0.0072 (16) 0.0005 (18) 0.0132 (16)
C1MB 0.0385 (17) 0.0477 (18) 0.0409 (19) 0.0031 (14) −0.0020 (14) −0.0153 (15)

Geometric parameters (Å, °)

Ni1A—N1A 1.991 (2) C8—H8A 0.9900
Ni1A—O1A 1.9957 (17) C8—H8B 0.9900
Ni1A—O1 2.0716 (18) C9—H9A 0.9900
Ni1A—O1AA 2.0762 (18) C9—H9B 0.9900
Ni1A—O1MA 2.1318 (18) C1A—C6A 1.410 (4)
Ni1A—N2A 2.156 (2) C1A—C2A 1.412 (4)
Ni1B—O1B 1.9893 (18) C1A—C7A 1.443 (4)
Ni1B—N1B 2.006 (2) C2A—C3A 1.419 (3)
Ni1B—O1 2.0470 (18) C3A—C4A 1.363 (3)
Ni1B—O1AA 2.0616 (17) C3A—H3AA 0.9500
Ni1B—O1MB 2.1692 (19) C4A—C5A 1.390 (4)
Ni1B—N2B 2.198 (2) C4A—H4AA 0.9500
Cl—C4 1.754 (3) C5A—C6A 1.362 (4)
Cl1A—C5A 1.744 (3) C6A—H6AA 0.9500
Cl1B—C5B 1.754 (3) C7A—H7AA 0.9500
O1—C1 1.333 (3) C8A—C9A 1.530 (4)
O1A—C2A 1.311 (3) C8A—H8AA 0.9900
O1B—C2B 1.307 (3) C8A—H8AB 0.9900
O1AA—C1AA 1.287 (3) C9A—H9AA 0.9900
O2AA—C1AA 1.233 (3) C9A—H9AB 0.9900
O1MA—C1MA 1.421 (3) C1B—C2B 1.415 (4)
O1MA—H1MK 0.8400 C1B—C6B 1.417 (4)
O1MB—C1MB 1.425 (3) C1B—C7B 1.440 (4)
O1MB—H1MJ 0.8400 C2B—C3B 1.422 (4)
O1W—H1W1 0.817 (17) C3B—C4B 1.372 (4)
O1W—H1W2 0.805 (17) C3B—H3BA 0.9500
O1M—C1M 1.411 (4) C4B—C5B 1.384 (4)
O1M—H1M 0.8400 C4B—H4BA 0.9500
N1A—C7A 1.283 (3) C5B—C6B 1.363 (4)
N1A—C8A 1.469 (3) C6B—H6BA 0.9500
N2A—C7 1.483 (3) C7B—H7BA 0.9500
N2A—C9A 1.484 (3) C8B—C9B 1.512 (4)
N2A—C8 1.495 (3) C8B—H8BA 0.9900
N1B—C7B 1.278 (3) C8B—H8BB 0.9900
N1B—C8B 1.469 (3) C9B—H9BA 0.9900
N2B—C7 1.485 (3) C9B—H9BB 0.9900
N2B—C9B 1.488 (3) C1AA—C2AA 1.499 (4)
N2B—C9 1.492 (3) C2AA—H2AA 0.9800
C1—C2 1.395 (4) C2AA—H2AB 0.9800
C1—C6 1.408 (4) C2AA—H2AC 0.9800
C2—C3 1.385 (4) C1M—H1M1 0.9800
C2—H2A 0.9500 C1M—H1M2 0.9800
C3—C4 1.372 (4) C1M—H1M3 0.9800
C3—H3A 0.9500 C1MA—H1MA 0.9800
C4—C5 1.369 (4) C1MA—H1MB 0.9800
C5—C6 1.394 (4) C1MA—H1MC 0.9800
C5—H5A 0.9500 C1MB—H1MD 0.9800
C6—C7 1.498 (4) C1MB—H1ME 0.9800
C7—H7A 1.0000 C1MB—H1MF 0.9800
C8—C9 1.526 (4)
N1A—Ni1A—O1A 91.69 (8) N2B—C9—H9B 110.7
N1A—Ni1A—O1 99.42 (8) C8—C9—H9B 110.7
O1A—Ni1A—O1 93.77 (7) H9A—C9—H9B 108.8
N1A—Ni1A—O1AA 177.14 (8) C6A—C1A—C2A 119.7 (2)
O1A—Ni1A—O1AA 90.80 (7) C6A—C1A—C7A 115.9 (2)
O1—Ni1A—O1AA 79.01 (7) C2A—C1A—C7A 124.4 (2)
N1A—Ni1A—O1MA 89.31 (8) O1A—C2A—C1A 124.5 (2)
O1A—Ni1A—O1MA 90.65 (7) O1A—C2A—C3A 118.3 (2)
O1—Ni1A—O1MA 170.08 (7) C1A—C2A—C3A 117.2 (2)
O1AA—Ni1A—O1MA 92.07 (7) C4A—C3A—C2A 121.9 (3)
N1A—Ni1A—N2A 83.93 (9) C4A—C3A—H3AA 119.1
O1A—Ni1A—N2A 174.56 (8) C2A—C3A—H3AA 119.1
O1—Ni1A—N2A 90.13 (7) C3A—C4A—C5A 120.2 (3)
O1AA—Ni1A—N2A 93.66 (8) C3A—C4A—H4AA 119.9
O1MA—Ni1A—N2A 86.10 (8) C5A—C4A—H4AA 119.9
O1B—Ni1B—N1B 91.34 (8) C6A—C5A—C4A 120.1 (2)
O1B—Ni1B—O1 92.96 (7) C6A—C5A—Cl1A 120.9 (2)
N1B—Ni1B—O1 99.75 (8) C4A—C5A—Cl1A 119.0 (2)
O1B—Ni1B—O1AA 94.21 (7) C5A—C6A—C1A 121.0 (3)
N1B—Ni1B—O1AA 174.45 (9) C5A—C6A—H6AA 119.5
O1—Ni1B—O1AA 79.91 (7) C1A—C6A—H6AA 119.5
O1B—Ni1B—O1MB 90.42 (7) N1A—C7A—C1A 126.0 (3)
N1B—Ni1B—O1MB 88.08 (8) N1A—C7A—H7AA 117.0
O1—Ni1B—O1MB 171.38 (7) C1A—C7A—H7AA 117.0
O1AA—Ni1B—O1MB 91.95 (7) N1A—C8A—C9A 108.2 (2)
O1B—Ni1B—N2B 174.43 (8) N1A—C8A—H8AA 110.0
N1B—Ni1B—N2B 83.09 (8) C9A—C8A—H8AA 110.0
O1—Ni1B—N2B 88.06 (7) N1A—C8A—H8AB 110.0
O1AA—Ni1B—N2B 91.36 (7) C9A—C8A—H8AB 110.0
O1MB—Ni1B—N2B 89.33 (7) H8AA—C8A—H8AB 108.4
C1—O1—Ni1B 117.51 (15) N2A—C9A—C8A 112.9 (2)
C1—O1—Ni1A 114.00 (15) N2A—C9A—H9AA 109.0
Ni1B—O1—Ni1A 97.98 (7) C8A—C9A—H9AA 109.0
C2A—O1A—Ni1A 127.06 (17) N2A—C9A—H9AB 109.0
C2B—O1B—Ni1B 127.68 (17) C8A—C9A—H9AB 109.0
C1AA—O1AA—Ni1B 137.71 (18) H9AA—C9A—H9AB 107.8
C1AA—O1AA—Ni1A 124.40 (17) C2B—C1B—C6B 119.4 (3)
Ni1B—O1AA—Ni1A 97.37 (8) C2B—C1B—C7B 124.5 (2)
C1MA—O1MA—Ni1A 122.36 (17) C6B—C1B—C7B 116.1 (3)
C1MA—O1MA—H1MK 109.5 O1B—C2B—C1B 124.0 (2)
Ni1A—O1MA—H1MK 99.2 O1B—C2B—C3B 118.3 (2)
C1MB—O1MB—Ni1B 122.82 (16) C1B—C2B—C3B 117.7 (2)
C1MB—O1MB—H1MJ 109.5 C4B—C3B—C2B 121.4 (3)
Ni1B—O1MB—H1MJ 123.5 C4B—C3B—H3BA 119.3
H1W1—O1W—H1W2 105 (3) C2B—C3B—H3BA 119.3
C1M—O1M—H1M 109.5 C3B—C4B—C5B 120.0 (3)
C7A—N1A—C8A 118.8 (2) C3B—C4B—H4BA 120.0
C7A—N1A—Ni1A 126.37 (19) C5B—C4B—H4BA 120.0
C8A—N1A—Ni1A 114.69 (17) C6B—C5B—C4B 121.0 (3)
C7—N2A—C9A 114.0 (2) C6B—C5B—Cl1B 119.2 (2)
C7—N2A—C8 102.45 (19) C4B—C5B—Cl1B 119.8 (2)
C9A—N2A—C8 110.5 (2) C5B—C6B—C1B 120.5 (3)
C7—N2A—Ni1A 113.52 (15) C5B—C6B—H6BA 119.8
C9A—N2A—Ni1A 102.78 (15) C1B—C6B—H6BA 119.8
C8—N2A—Ni1A 114.02 (17) N1B—C7B—C1B 126.2 (3)
C7B—N1B—C8B 119.5 (2) N1B—C7B—H7BA 116.9
C7B—N1B—Ni1B 125.8 (2) C1B—C7B—H7BA 116.9
C8B—N1B—Ni1B 114.43 (17) N1B—C8B—C9B 108.8 (2)
C7—N2B—C9B 113.1 (2) N1B—C8B—H8BA 109.9
C7—N2B—C9 102.51 (19) C9B—C8B—H8BA 109.9
C9B—N2B—C9 110.6 (2) N1B—C8B—H8BB 109.9
C7—N2B—Ni1B 114.96 (15) C9B—C8B—H8BB 109.9
C9B—N2B—Ni1B 102.26 (16) H8BA—C8B—H8BB 108.3
C9—N2B—Ni1B 113.71 (17) N2B—C9B—C8B 112.7 (2)
O1—C1—C2 121.6 (2) N2B—C9B—H9BA 109.0
O1—C1—C6 120.9 (2) C8B—C9B—H9BA 109.0
C2—C1—C6 117.5 (2) N2B—C9B—H9BB 109.0
C3—C2—C1 121.5 (3) C8B—C9B—H9BB 109.0
C3—C2—H2A 119.3 H9BA—C9B—H9BB 107.8
C1—C2—H2A 119.3 O2AA—C1AA—O1AA 122.0 (3)
C4—C3—C2 119.4 (3) O2AA—C1AA—C2AA 119.1 (3)
C4—C3—H3A 120.3 O1AA—C1AA—C2AA 118.9 (3)
C2—C3—H3A 120.3 C1AA—C2AA—H2AA 109.5
C5—C4—C3 121.3 (3) C1AA—C2AA—H2AB 109.5
C5—C4—Cl 118.9 (2) H2AA—C2AA—H2AB 109.5
C3—C4—Cl 119.7 (2) C1AA—C2AA—H2AC 109.5
C4—C5—C6 119.6 (3) H2AA—C2AA—H2AC 109.5
C4—C5—H5A 120.2 H2AB—C2AA—H2AC 109.5
C6—C5—H5A 120.2 O1M—C1M—H1M1 109.5
C5—C6—C1 120.6 (2) O1M—C1M—H1M2 109.5
C5—C6—C7 119.5 (2) H1M1—C1M—H1M2 109.5
C1—C6—C7 119.9 (2) O1M—C1M—H1M3 109.5
N2A—C7—N2B 101.3 (2) H1M1—C1M—H1M3 109.5
N2A—C7—C6 113.9 (2) H1M2—C1M—H1M3 109.5
N2B—C7—C6 115.6 (2) O1MA—C1MA—H1MA 109.5
N2A—C7—H7A 108.6 O1MA—C1MA—H1MB 109.5
N2B—C7—H7A 108.6 H1MA—C1MA—H1MB 109.5
C6—C7—H7A 108.6 O1MA—C1MA—H1MC 109.5
N2A—C8—C9 104.5 (2) H1MA—C1MA—H1MC 109.5
N2A—C8—H8A 110.9 H1MB—C1MA—H1MC 109.5
C9—C8—H8A 110.9 O1MB—C1MB—H1MD 109.5
N2A—C8—H8B 110.9 O1MB—C1MB—H1ME 109.5
C9—C8—H8B 110.9 H1MD—C1MB—H1ME 109.5
H8A—C8—H8B 108.9 O1MB—C1MB—H1MF 109.5
N2B—C9—C8 105.3 (2) H1MD—C1MB—H1MF 109.5
N2B—C9—H9A 110.7 H1ME—C1MB—H1MF 109.5
C8—C9—H9A 110.7
O1B—Ni1B—O1—C1 125.63 (17) Ni1A—O1—C1—C6 −56.3 (3)
N1B—Ni1B—O1—C1 33.76 (18) O1—C1—C2—C3 −175.9 (3)
O1AA—Ni1B—O1—C1 −140.61 (18) C6—C1—C2—C3 3.0 (4)
N2B—Ni1B—O1—C1 −48.88 (18) C1—C2—C3—C4 −0.3 (4)
O1B—Ni1B—O1—Ni1A −111.96 (8) C2—C3—C4—C5 −2.0 (4)
N1B—Ni1B—O1—Ni1A 156.17 (8) C2—C3—C4—Cl 174.7 (2)
O1AA—Ni1B—O1—Ni1A −18.20 (7) C3—C4—C5—C6 1.5 (4)
N2B—Ni1B—O1—Ni1A 73.53 (8) Cl—C4—C5—C6 −175.2 (2)
N1A—Ni1A—O1—C1 −34.51 (17) C4—C5—C6—C1 1.3 (4)
O1A—Ni1A—O1—C1 −126.84 (16) C4—C5—C6—C7 177.8 (2)
O1AA—Ni1A—O1—C1 143.07 (17) O1—C1—C6—C5 175.4 (2)
N2A—Ni1A—O1—C1 49.37 (17) C2—C1—C6—C5 −3.4 (4)
N1A—Ni1A—O1—Ni1B −159.46 (8) O1—C1—C6—C7 −1.1 (4)
O1A—Ni1A—O1—Ni1B 108.20 (8) C2—C1—C6—C7 −179.9 (2)
O1AA—Ni1A—O1—Ni1B 18.12 (7) C9A—N2A—C7—N2B −166.61 (19)
N2A—Ni1A—O1—Ni1B −75.58 (8) C8—N2A—C7—N2B −47.3 (2)
N1A—Ni1A—O1A—C2A 1.2 (2) Ni1A—N2A—C7—N2B 76.2 (2)
O1—Ni1A—O1A—C2A 100.7 (2) C9A—N2A—C7—C6 68.7 (3)
O1AA—Ni1A—O1A—C2A 179.77 (19) C8—N2A—C7—C6 −172.0 (2)
O1MA—Ni1A—O1A—C2A −88.2 (2) Ni1A—N2A—C7—C6 −48.6 (3)
N1B—Ni1B—O1B—C2B −4.7 (2) C9B—N2B—C7—N2A 165.3 (2)
O1—Ni1B—O1B—C2B −104.5 (2) C9—N2B—C7—N2A 46.2 (2)
O1AA—Ni1B—O1B—C2B 175.4 (2) Ni1B—N2B—C7—N2A −77.7 (2)
O1MB—Ni1B—O1B—C2B 83.4 (2) C9B—N2B—C7—C6 −71.1 (3)
O1B—Ni1B—O1AA—C1AA −61.0 (3) C9—N2B—C7—C6 169.8 (2)
O1—Ni1B—O1AA—C1AA −153.2 (3) Ni1B—N2B—C7—C6 45.9 (3)
O1MB—Ni1B—O1AA—C1AA 29.6 (3) C5—C6—C7—N2A −115.5 (3)
N2B—Ni1B—O1AA—C1AA 119.0 (3) C1—C6—C7—N2A 61.0 (3)
O1B—Ni1B—O1AA—Ni1A 110.40 (8) C5—C6—C7—N2B 127.8 (3)
O1—Ni1B—O1AA—Ni1A 18.13 (7) C1—C6—C7—N2B −55.7 (3)
O1MB—Ni1B—O1AA—Ni1A −159.04 (8) C7—N2A—C8—C9 29.8 (3)
N2B—Ni1B—O1AA—Ni1A −69.66 (8) C9A—N2A—C8—C9 151.5 (2)
O1A—Ni1A—O1AA—C1AA 61.3 (2) Ni1A—N2A—C8—C9 −93.3 (2)
O1—Ni1A—O1AA—C1AA 155.0 (2) C7—N2B—C9—C8 −27.3 (3)
O1MA—Ni1A—O1AA—C1AA −29.4 (2) C9B—N2B—C9—C8 −148.2 (2)
N2A—Ni1A—O1AA—C1AA −115.6 (2) Ni1B—N2B—C9—C8 97.4 (2)
O1A—Ni1A—O1AA—Ni1B −111.65 (8) N2A—C8—C9—N2B −1.5 (3)
O1—Ni1A—O1AA—Ni1B −17.96 (7) Ni1A—O1A—C2A—C1A −1.7 (3)
O1MA—Ni1A—O1AA—Ni1B 157.67 (7) Ni1A—O1A—C2A—C3A 177.05 (17)
N2A—Ni1A—O1AA—Ni1B 71.45 (8) C6A—C1A—C2A—O1A 179.4 (2)
N1A—Ni1A—O1MA—C1MA −53.4 (2) C7A—C1A—C2A—O1A 2.3 (4)
O1A—Ni1A—O1MA—C1MA 38.3 (2) C6A—C1A—C2A—C3A 0.7 (4)
O1AA—Ni1A—O1MA—C1MA 129.1 (2) C7A—C1A—C2A—C3A −176.5 (2)
N2A—Ni1A—O1MA—C1MA −137.3 (2) O1A—C2A—C3A—C4A −179.2 (2)
O1B—Ni1B—O1MB—C1MB −27.0 (2) C1A—C2A—C3A—C4A −0.4 (4)
N1B—Ni1B—O1MB—C1MB 64.4 (2) C2A—C3A—C4A—C5A −0.5 (4)
O1AA—Ni1B—O1MB—C1MB −121.2 (2) C3A—C4A—C5A—C6A 1.2 (4)
N2B—Ni1B—O1MB—C1MB 147.5 (2) C3A—C4A—C5A—Cl1A −178.1 (2)
O1A—Ni1A—N1A—C7A −1.7 (2) C4A—C5A—C6A—C1A −0.9 (4)
O1—Ni1A—N1A—C7A −95.8 (2) Cl1A—C5A—C6A—C1A 178.4 (2)
O1MA—Ni1A—N1A—C7A 89.0 (2) C2A—C1A—C6A—C5A 0.0 (4)
N2A—Ni1A—N1A—C7A 175.1 (2) C7A—C1A—C6A—C5A 177.3 (3)
O1A—Ni1A—N1A—C8A −176.78 (19) C8A—N1A—C7A—C1A 177.7 (3)
O1—Ni1A—N1A—C8A 89.1 (2) Ni1A—N1A—C7A—C1A 2.8 (4)
O1MA—Ni1A—N1A—C8A −86.2 (2) C6A—C1A—C7A—N1A 179.9 (3)
N2A—Ni1A—N1A—C8A 0.00 (19) C2A—C1A—C7A—N1A −2.9 (4)
N1A—Ni1A—N2A—C7 100.69 (18) C7A—N1A—C8A—C9A −152.7 (2)
O1—Ni1A—N2A—C7 1.24 (17) Ni1A—N1A—C8A—C9A 22.8 (3)
O1AA—Ni1A—N2A—C7 −77.75 (17) C7—N2A—C9A—C8A −80.8 (3)
O1MA—Ni1A—N2A—C7 −169.59 (17) C8—N2A—C9A—C8A 164.5 (2)
N1A—Ni1A—N2A—C9A −22.88 (17) Ni1A—N2A—C9A—C8A 42.5 (2)
O1—Ni1A—N2A—C9A −122.33 (16) N1A—C8A—C9A—N2A −45.0 (3)
O1AA—Ni1A—N2A—C9A 158.67 (16) Ni1B—O1B—C2B—C1B 1.1 (4)
O1MA—Ni1A—N2A—C9A 66.84 (16) Ni1B—O1B—C2B—C3B −178.32 (18)
N1A—Ni1A—N2A—C8 −142.47 (18) C6B—C1B—C2B—O1B −176.3 (2)
O1—Ni1A—N2A—C8 118.07 (17) C7B—C1B—C2B—O1B 2.0 (4)
O1AA—Ni1A—N2A—C8 39.08 (17) C6B—C1B—C2B—C3B 3.1 (4)
O1MA—Ni1A—N2A—C8 −52.75 (17) C7B—C1B—C2B—C3B −178.6 (2)
O1B—Ni1B—N1B—C7B 7.6 (2) O1B—C2B—C3B—C4B 177.4 (2)
O1—Ni1B—N1B—C7B 100.9 (2) C1B—C2B—C3B—C4B −2.0 (4)
O1MB—Ni1B—N1B—C7B −82.8 (2) C2B—C3B—C4B—C5B −0.3 (4)
N2B—Ni1B—N1B—C7B −172.3 (2) C3B—C4B—C5B—C6B 1.5 (4)
O1B—Ni1B—N1B—C8B −178.14 (18) C3B—C4B—C5B—Cl1B −177.9 (2)
O1—Ni1B—N1B—C8B −84.90 (18) C4B—C5B—C6B—C1B −0.4 (4)
O1MB—Ni1B—N1B—C8B 91.49 (18) Cl1B—C5B—C6B—C1B 179.1 (2)
N2B—Ni1B—N1B—C8B 1.93 (18) C2B—C1B—C6B—C5B −2.0 (4)
N1B—Ni1B—N2B—C7 −101.07 (17) C7B—C1B—C6B—C5B 179.6 (3)
O1—Ni1B—N2B—C7 −1.00 (17) C8B—N1B—C7B—C1B 178.7 (3)
O1AA—Ni1B—N2B—C7 78.85 (17) Ni1B—N1B—C7B—C1B −7.3 (4)
O1MB—Ni1B—N2B—C7 170.79 (17) C2B—C1B—C7B—N1B 1.5 (5)
N1B—Ni1B—N2B—C9B 21.94 (16) C6B—C1B—C7B—N1B 179.8 (3)
O1—Ni1B—N2B—C9B 122.00 (16) C7B—N1B—C8B—C9B 148.9 (2)
O1AA—Ni1B—N2B—C9B −158.15 (16) Ni1B—N1B—C8B—C9B −25.7 (3)
O1MB—Ni1B—N2B—C9B −66.21 (16) C7—N2B—C9B—C8B 81.2 (3)
N1B—Ni1B—N2B—C9 141.20 (17) C9—N2B—C9B—C8B −164.4 (2)
O1—Ni1B—N2B—C9 −118.74 (17) Ni1B—N2B—C9B—C8B −43.0 (2)
O1AA—Ni1B—N2B—C9 −38.89 (17) N1B—C8B—C9B—N2B 47.6 (3)
O1MB—Ni1B—N2B—C9 53.05 (16) Ni1B—O1AA—C1AA—O2AA −156.4 (2)
Ni1B—O1—C1—C2 −123.7 (2) Ni1A—O1AA—C1AA—O2AA 34.0 (4)
Ni1A—O1—C1—C2 122.5 (2) Ni1B—O1AA—C1AA—C2AA 25.8 (4)
Ni1B—O1—C1—C6 57.5 (3) Ni1A—O1AA—C1AA—C2AA −143.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1MA—H1MK···O2AA 0.84 1.77 2.586 (3) 162.
O1MA—H1MK···O1AA 0.84 2.66 3.029 (2) 108.
O1W—H1W1···O1A 0.82 (2) 1.86 (2) 2.679 (3) 175 (4)
O1W—H1W2···O1B 0.81 (2) 1.91 (2) 2.708 (3) 174 (3)
O1M—H1M···O1Wi 0.84 1.74 2.577 (3) 170.
O1MB—H1MJ···O1M 0.84 1.83 2.658 (3) 167.
C6A—H6AA···O2AAii 0.95 2.37 3.237 (4) 152.
C7A—H7AA···O2AAii 0.95 2.32 3.211 (3) 156.

Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) −x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2099).

References

  1. Bruker (2000). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Fondo, M., Garcia-Deibe, A. M., Corbella, M., Ruiz, E., Tercero, J., Sanmartin, J. & Bermejo, M. R. (2005). Inorg. Chem. 44, 5011–5020. [DOI] [PubMed]
  4. Fondo, M., Garcia-Deibe, A. M., Ocampo, N., Sanmartin, J. & Bermejo, M. R. (2007). Dalton Trans. pp. 414–416. [DOI] [PubMed]
  5. Fondo, M., Garcia-Deibe, A. M., Ocampo, N., Sanmartin, J., Bermejo, M. R. & Llamas-Saiz, A. L. (2006). Dalton Trans. pp. 4260–4270. [DOI] [PubMed]
  6. Fondo, M., Ocampo, N., Garcia-Deibe, A. M., Ruiz, E., Tercero, J. & Sanmartin, J. (2009). Inorg. Chem. 48, 9861–9873. [DOI] [PubMed]
  7. Fondo, M., Ocampo, N., Garcia-Deibe, A. M., Vicente, R., Corbella, M., Bermejo, M. R. & Sanmartin, J. (2006). Inorg. Chem. 45, 255–262. [DOI] [PubMed]
  8. Lu, L.-P., Lu, X.-P. & Zhu, M.-L. (2007). Acta Cryst. C63, m374–m376. [DOI] [PubMed]
  9. Paital, A. R., Ribas, J., Barrios, L. A., Aromi, G. & Ray, D. (2009). Dalton Trans. pp. 256–258. [DOI] [PubMed]
  10. Paital, A. R., Wong, W. T., Aromi, G. & Ray, D. (2007). Inorg. Chem. 46, 5727–5733. [DOI] [PubMed]
  11. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032727/jj2099sup1.cif

e-67-m1264-sup1.cif (36KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032727/jj2099Isup2.hkl

e-67-m1264-Isup2.hkl (427.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES