Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):m1238–m1239. doi: 10.1107/S1600536811032016

Diacetato-κO2 O,O′-aqua­(2,4,6-tri-2-pyridyl-1,3,5-triazine-κ3 N 2,N 1,N 6)manganese(II) monohydrate

Kwang Ha a,*
PMCID: PMC3200744  PMID: 22058860

Abstract

The MnII ion in the title compound, [Mn(CH3CO2)2(C18H12N6)(H2O)]·H2O, is seven-coordinated in an approximately penta­gonal–bipyramidal geometry by three N atoms of the tridentate 2,4,6-tri-2-pyridyl-1,3,5-triazine ligand and four O atoms from two distinct anionic acetato ligands and a water mol­ecule. One acetate anion chelates the Mn atom via two O atoms occupying equatorial positions, and the other anion coordinates the Mn atom as a monodentate ligand via one O atom. The complex and solvent water mol­ecules are linked by inter- and intra­molecular O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the crystal structure of 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz), see: Drew et al. (1998). For tptz complexes with a five-coordinate Mn(II) atom, see: Ha (2010), and with a seven-coordinate Mn(II) atom, see: Majumder et al. (2006); Zhang et al. (2008); Lo & Ng (2009).graphic file with name e-67-m1238-scheme1.jpg

Experimental

Crystal data

  • [Mn(C2H3O2)2(C18H12N6)(H2O)]·H2O

  • M r = 521.40

  • Monoclinic, Inline graphic

  • a = 10.341 (2) Å

  • b = 24.977 (5) Å

  • c = 9.8284 (19) Å

  • β = 118.073 (4)°

  • V = 2239.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 200 K

  • 0.32 × 0.24 × 0.17 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.863, T max = 1.000

  • 16577 measured reflections

  • 5548 independent reflections

  • 3076 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.153

  • S = 1.00

  • 5548 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811032016/ng5206sup1.cif

e-67-m1238-sup1.cif (26.3KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mn1—O3 2.113 (2)
Mn1—O5 2.245 (2)
Mn1—O1 2.284 (2)
Mn1—O2 2.295 (2)
Mn1—N1 2.298 (3)
Mn1—N4 2.387 (3)
Mn1—N6 2.393 (3)
O3—Mn1—O5 169.93 (10)
O1—Mn1—O2 57.06 (8)
N1—Mn1—N4 68.35 (9)
N1—Mn1—N6 68.43 (9)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯N5i 0.84 2.16 2.924 (3) 151
O5—H5B⋯O6ii 0.84 1.88 2.704 (3) 168
O6—H6A⋯O2 0.84 1.95 2.791 (3) 175
O6—H6B⋯O4iii 0.84 1.87 2.711 (4) 176
C3—H3⋯O5iv 0.95 2.46 3.399 (4) 170
C5—H5⋯O3i 0.95 2.59 3.338 (4) 136
C6—H6⋯O1 0.95 2.33 2.983 (4) 125
C18—H18⋯O2 0.95 2.55 3.198 (4) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

supplementary crystallographic information

Comment

The X-ray crystal structures of 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz) (Drew et al. 1998) and five- or seven-coordinated Mn(II)-tptz complexes, such as [MnCl2(tptz)] (Ha, 2010), [Mn(C2H3O2)(C2N3)(tptz)(H2O)].(H2O)2 (Majumder et al., 2006; Zhang et al., 2008) and [Mn(C2F3O2)(tptz)(H2O)2]C2F3O2 (Lo & Ng, 2009), have been investigated previously.

The title compound consists of the neutral Mn(II) complex [Mn(C2H3O2)2(tptz)(H2O)] and a solvent water molecule. In the reaction of Mn(CH3CO2)3.2H2O with tptz, it seems that the MnIII ion reduced to the MnII ion. In the complex, the MnII ion is seven-coordinated in an approximately pentagonal-bipyramidal geometry by three N atoms of the tridentate tptz ligand and four O atoms from two distinct anionic acetato ligands and a water molecule (Fig. 1). The coordination modes of the acetate anions are quite different: one anion chelates the Mn atom via two O atoms occupying equatorial positions, and the other anion coordinates the Mn atom as a monodentate ligand via one O atom and occupies the axial sites together with the water ligand. The Mn—O and Mn—N bond lengths are somewhat different, respectively (Table 1). The Mn1—N4/6(pyridyl) bonds are somewhat longer than the Mn1—N1(triazine) bond, and the Mn1—O1/2(equatorial) bonds are slightly longer than the Mn1—O3/5(axial) bonds. The O1—Mn1—O2 chelating angle is considerably smaller than the N1—Mn1—N4/6 chelating angles and the apical O3—Mn1—O5 bond is slightly bent with a bond angle of 169.93 (10)°. The carboxylate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths [C—O: 1.235 (4)–1.269 (4) Å]. In the crystal, the two pyridyl rings coordinated to the Mn atom are located approximately parallel to their carrier triazine ring, making dihedral angles of 1.9 (2)° and 2.8 (2)°. The dihedral angle between the uncoordinated pyridyl ring and triazine ring is 7.8 (2)°. The complex and solvent water molecules are linked by inter- and intramolecular O—H···O, O—H···N and C—H···O hydrogen bonds into a three-dimensional network (Fig. 2 and Table 2). The compounds stack in columns along the [101] direction and display numerous intermolecular π-π interactions between the six-membered rings, with a shortest centroid-centroid distance of 3.493 (2) Å.

Experimental

To a solution of Mn(CH3CO2)3.2H2O (0.4022 g, 1.50 mmol) in MeOH (30 ml) was added 2,4,6-tri-2-pyridyl-1,3,5-triazine (0.1561 g, 0.50 mmol) and stirred for 3 h at room temperature. After removal of the formed dark brown precipitate by filtration, the solvent of the filtrate was evaporated, and the residue was washed with acetone and dried under vacuum, to give a yellow powder (0.3207 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3NO2/MeOH solution.

Refinement

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The H atoms of the water ligand and solvent molecule were located from Fourier difference maps then allowed to ride on their parent O atoms in the final cycles of refinement with O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level; H atoms are shown as small circles of arbitrary radius.

Fig. 2.

Fig. 2.

View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[Mn(C2H3O2)2(C18H12N6)(H2O)]·H2O F(000) = 1076
Mr = 521.40 Dx = 1.546 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3469 reflections
a = 10.341 (2) Å θ = 2.2–27.2°
b = 24.977 (5) Å µ = 0.64 mm1
c = 9.8284 (19) Å T = 200 K
β = 118.073 (4)° Block, yellow
V = 2239.9 (8) Å3 0.32 × 0.24 × 0.17 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 5548 independent reflections
Radiation source: fine-focus sealed tube 3076 reflections with I > 2σ(I)
graphite Rint = 0.068
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −11→13
Tmin = 0.863, Tmax = 1.000 k = −28→33
16577 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0615P)2] where P = (Fo2 + 2Fc2)/3
5548 reflections (Δ/σ)max < 0.001
318 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.66399 (5) 0.120956 (18) 0.21934 (6) 0.02892 (17)
O1 0.8310 (3) 0.12897 (9) 0.1302 (3) 0.0428 (6)
O2 0.7412 (3) 0.04962 (9) 0.1291 (3) 0.0378 (6)
O3 0.8167 (3) 0.11251 (10) 0.4552 (3) 0.0500 (7)
O4 0.9755 (3) 0.09035 (13) 0.6912 (3) 0.0693 (9)
O5 0.4723 (2) 0.13074 (8) −0.0166 (2) 0.0333 (6)
H5A 0.4289 0.1603 −0.0328 0.050*
H5B 0.4083 0.1066 −0.0473 0.050*
N1 0.5198 (3) 0.16134 (10) 0.3098 (3) 0.0262 (6)
N2 0.4431 (3) 0.23975 (10) 0.3854 (3) 0.0286 (6)
N3 0.3510 (3) 0.15448 (10) 0.4067 (3) 0.0297 (6)
N4 0.6929 (3) 0.21595 (10) 0.2323 (3) 0.0278 (6)
N5 0.2620 (3) 0.28877 (11) 0.4719 (3) 0.0319 (7)
N6 0.5166 (3) 0.05706 (10) 0.2655 (3) 0.0302 (6)
C1 0.5225 (3) 0.21397 (12) 0.3310 (3) 0.0244 (7)
C2 0.6177 (3) 0.24544 (12) 0.2864 (3) 0.0254 (7)
C3 0.6272 (4) 0.30056 (12) 0.2985 (4) 0.0313 (8)
H3 0.5735 0.3199 0.3384 0.038*
C4 0.7163 (4) 0.32668 (13) 0.2514 (4) 0.0343 (8)
H4 0.7255 0.3645 0.2590 0.041*
C5 0.7919 (4) 0.29748 (13) 0.1930 (4) 0.0351 (8)
H5 0.8521 0.3149 0.1575 0.042*
C6 0.7786 (4) 0.24225 (13) 0.1872 (4) 0.0313 (8)
H6 0.8328 0.2222 0.1493 0.038*
C7 0.3586 (3) 0.20828 (12) 0.4201 (3) 0.0266 (7)
C8 0.2631 (4) 0.23502 (13) 0.4750 (4) 0.0295 (7)
C9 0.1796 (4) 0.20573 (15) 0.5232 (5) 0.0486 (10)
H9 0.1846 0.1677 0.5267 0.058*
C10 0.0883 (5) 0.23274 (16) 0.5664 (5) 0.0549 (11)
H10 0.0292 0.2134 0.5997 0.066*
C11 0.0831 (4) 0.28754 (15) 0.5611 (4) 0.0385 (9)
H11 0.0202 0.3069 0.5893 0.046*
C12 0.1723 (4) 0.31367 (14) 0.5133 (4) 0.0354 (8)
H12 0.1695 0.3517 0.5099 0.042*
C13 0.4331 (3) 0.13336 (12) 0.3489 (4) 0.0260 (7)
C14 0.4284 (3) 0.07435 (12) 0.3221 (3) 0.0276 (7)
C15 0.3382 (4) 0.04070 (13) 0.3515 (4) 0.0326 (8)
H15 0.2775 0.0544 0.3918 0.039*
C16 0.3381 (4) −0.01338 (13) 0.3210 (4) 0.0389 (9)
H16 0.2770 −0.0375 0.3394 0.047*
C17 0.4277 (4) −0.03147 (14) 0.2638 (4) 0.0385 (9)
H17 0.4304 −0.0684 0.2426 0.046*
C18 0.5144 (4) 0.00486 (13) 0.2373 (4) 0.0353 (8)
H18 0.5756 −0.0082 0.1967 0.042*
C19 0.8296 (4) 0.07960 (14) 0.1086 (4) 0.0331 (8)
C20 0.9353 (4) 0.05507 (15) 0.0623 (5) 0.0493 (10)
H20A 1.0283 0.0478 0.1546 0.074*
H20B 0.9522 0.0799 −0.0050 0.074*
H20C 0.8945 0.0215 0.0070 0.074*
C21 0.9334 (4) 0.09139 (13) 0.5510 (4) 0.0360 (9)
C22 1.0344 (5) 0.06987 (19) 0.4916 (5) 0.0757 (14)
H22A 1.1331 0.0653 0.5780 0.114*
H22B 1.0378 0.0951 0.4171 0.114*
H22C 0.9976 0.0352 0.4413 0.114*
O6 0.7515 (3) −0.06096 (9) 0.0946 (3) 0.0496 (7)
H6A 0.7506 −0.0275 0.1014 0.074*
H6B 0.8347 −0.0702 0.1638 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0317 (3) 0.0250 (3) 0.0342 (3) 0.0026 (2) 0.0189 (2) −0.0010 (2)
O1 0.0490 (16) 0.0322 (15) 0.0636 (17) 0.0011 (11) 0.0400 (14) −0.0048 (12)
O2 0.0395 (15) 0.0305 (13) 0.0502 (15) 0.0025 (10) 0.0267 (13) −0.0055 (11)
O3 0.0467 (17) 0.0581 (18) 0.0335 (14) 0.0199 (13) 0.0092 (13) −0.0027 (12)
O4 0.062 (2) 0.093 (2) 0.0409 (17) 0.0372 (17) 0.0136 (15) 0.0048 (16)
O5 0.0358 (14) 0.0282 (13) 0.0376 (13) 0.0012 (9) 0.0187 (11) 0.0010 (10)
N1 0.0268 (15) 0.0249 (15) 0.0291 (14) 0.0013 (11) 0.0150 (12) 0.0001 (12)
N2 0.0290 (16) 0.0272 (15) 0.0324 (15) −0.0013 (11) 0.0167 (13) −0.0025 (12)
N3 0.0333 (16) 0.0270 (15) 0.0330 (15) −0.0004 (11) 0.0191 (13) −0.0013 (12)
N4 0.0294 (16) 0.0237 (14) 0.0335 (15) 0.0017 (11) 0.0174 (13) −0.0004 (12)
N5 0.0347 (17) 0.0301 (16) 0.0369 (16) 0.0007 (12) 0.0219 (14) −0.0036 (13)
N6 0.0358 (17) 0.0252 (15) 0.0318 (15) 0.0014 (11) 0.0178 (13) 0.0011 (12)
C1 0.0235 (17) 0.0256 (17) 0.0263 (16) 0.0031 (12) 0.0136 (14) 0.0018 (13)
C2 0.0246 (17) 0.0237 (17) 0.0288 (17) 0.0001 (13) 0.0134 (14) −0.0015 (14)
C3 0.037 (2) 0.0250 (18) 0.0401 (19) 0.0033 (14) 0.0245 (17) −0.0003 (15)
C4 0.038 (2) 0.0248 (18) 0.047 (2) −0.0018 (14) 0.0256 (18) −0.0050 (16)
C5 0.038 (2) 0.033 (2) 0.046 (2) −0.0044 (15) 0.0284 (18) 0.0015 (17)
C6 0.033 (2) 0.0290 (19) 0.043 (2) 0.0001 (14) 0.0272 (17) −0.0014 (16)
C7 0.0256 (18) 0.0288 (18) 0.0273 (17) −0.0017 (13) 0.0140 (14) −0.0012 (14)
C8 0.0295 (19) 0.0311 (19) 0.0331 (18) −0.0030 (14) 0.0190 (16) −0.0054 (15)
C9 0.063 (3) 0.032 (2) 0.077 (3) −0.0054 (18) 0.055 (2) −0.005 (2)
C10 0.059 (3) 0.050 (3) 0.083 (3) −0.007 (2) 0.055 (3) −0.003 (2)
C11 0.030 (2) 0.049 (2) 0.043 (2) −0.0001 (16) 0.0234 (17) −0.0061 (18)
C12 0.035 (2) 0.037 (2) 0.038 (2) 0.0036 (15) 0.0193 (17) −0.0041 (16)
C13 0.0281 (18) 0.0252 (17) 0.0252 (16) 0.0002 (13) 0.0129 (14) 0.0029 (13)
C14 0.0269 (18) 0.0264 (18) 0.0262 (17) 0.0032 (13) 0.0098 (14) 0.0015 (14)
C15 0.033 (2) 0.0308 (19) 0.0366 (19) −0.0023 (14) 0.0190 (16) 0.0015 (16)
C16 0.043 (2) 0.031 (2) 0.042 (2) −0.0090 (16) 0.0199 (19) 0.0012 (16)
C17 0.049 (2) 0.0262 (19) 0.046 (2) −0.0033 (16) 0.0270 (19) −0.0035 (17)
C18 0.045 (2) 0.0263 (19) 0.039 (2) 0.0017 (15) 0.0227 (18) −0.0018 (15)
C19 0.032 (2) 0.033 (2) 0.0356 (19) 0.0016 (15) 0.0172 (16) −0.0041 (16)
C20 0.047 (3) 0.050 (2) 0.062 (3) 0.0093 (18) 0.034 (2) −0.007 (2)
C21 0.036 (2) 0.030 (2) 0.037 (2) 0.0042 (15) 0.0128 (18) −0.0031 (16)
C22 0.066 (3) 0.085 (4) 0.077 (3) 0.013 (3) 0.034 (3) 0.006 (3)
O6 0.0402 (16) 0.0272 (14) 0.0627 (17) 0.0008 (10) 0.0089 (13) −0.0022 (12)

Geometric parameters (Å, °)

Mn1—O3 2.113 (2) C5—C6 1.385 (4)
Mn1—O5 2.245 (2) C5—H5 0.9500
Mn1—O1 2.284 (2) C6—H6 0.9500
Mn1—O2 2.295 (2) C7—C8 1.487 (4)
Mn1—N1 2.298 (3) C8—C9 1.375 (5)
Mn1—N4 2.387 (3) C9—C10 1.380 (5)
Mn1—N6 2.393 (3) C9—H9 0.9500
Mn1—C19 2.635 (4) C10—C11 1.370 (5)
O1—C19 1.250 (4) C10—H10 0.9500
O2—C19 1.269 (4) C11—C12 1.380 (5)
O3—C21 1.246 (4) C11—H11 0.9500
O4—C21 1.235 (4) C12—H12 0.9500
O5—H5A 0.8400 C13—C14 1.494 (4)
O5—H5B 0.8400 C14—C15 1.383 (4)
N1—C13 1.328 (4) C15—C16 1.384 (4)
N1—C1 1.329 (4) C15—H15 0.9500
N2—C7 1.334 (4) C16—C17 1.366 (5)
N2—C1 1.337 (4) C16—H16 0.9500
N3—C13 1.332 (4) C17—C18 1.384 (5)
N3—C7 1.349 (4) C17—H17 0.9500
N4—C6 1.335 (4) C18—H18 0.9500
N4—C2 1.349 (4) C19—C20 1.498 (5)
N5—C12 1.330 (4) C20—H20A 0.9800
N5—C8 1.343 (4) C20—H20B 0.9800
N6—C18 1.331 (4) C20—H20C 0.9800
N6—C14 1.344 (4) C21—C22 1.514 (5)
C1—C2 1.478 (4) C22—H22A 0.9800
C2—C3 1.381 (4) C22—H22B 0.9800
C3—C4 1.375 (4) C22—H22C 0.9800
C3—H3 0.9500 O6—H6A 0.8400
C4—C5 1.377 (4) O6—H6B 0.8400
C4—H4 0.9500
O3—Mn1—O5 169.93 (10) N4—C6—C5 123.1 (3)
O3—Mn1—O1 96.91 (11) N4—C6—H6 118.5
O5—Mn1—O1 93.07 (9) C5—C6—H6 118.5
O3—Mn1—O2 97.49 (9) N2—C7—N3 125.2 (3)
O5—Mn1—O2 89.08 (8) N2—C7—C8 117.0 (3)
O1—Mn1—O2 57.06 (8) N3—C7—C8 117.7 (3)
O3—Mn1—N1 84.55 (9) N5—C8—C9 122.7 (3)
O5—Mn1—N1 86.20 (8) N5—C8—C7 116.2 (3)
O1—Mn1—N1 148.84 (9) C9—C8—C7 121.2 (3)
O2—Mn1—N1 153.86 (9) C8—C9—C10 118.5 (3)
O3—Mn1—N4 91.75 (9) C8—C9—H9 120.7
O5—Mn1—N4 88.54 (8) C10—C9—H9 120.7
O1—Mn1—N4 80.48 (9) C11—C10—C9 119.8 (4)
O2—Mn1—N4 137.27 (9) C11—C10—H10 120.1
N1—Mn1—N4 68.35 (9) C9—C10—H10 120.1
O3—Mn1—N6 86.51 (10) C10—C11—C12 117.7 (3)
O5—Mn1—N6 86.38 (9) C10—C11—H11 121.1
O1—Mn1—N6 142.68 (9) C12—C11—H11 121.1
O2—Mn1—N6 85.63 (9) N5—C12—C11 123.9 (3)
N1—Mn1—N6 68.43 (9) N5—C12—H12 118.1
N4—Mn1—N6 136.71 (9) C11—C12—H12 118.1
O3—Mn1—C19 96.82 (10) N1—C13—N3 124.5 (3)
O5—Mn1—C19 92.61 (9) N1—C13—C14 116.0 (3)
O1—Mn1—C19 28.32 (9) N3—C13—C14 119.4 (3)
O2—Mn1—C19 28.80 (9) N6—C14—C15 123.2 (3)
N1—Mn1—C19 176.91 (10) N6—C14—C13 114.7 (3)
N4—Mn1—C19 108.78 (10) C15—C14—C13 122.2 (3)
N6—Mn1—C19 114.37 (10) C14—C15—C16 118.7 (3)
C19—O1—Mn1 91.6 (2) C14—C15—H15 120.7
C19—O2—Mn1 90.6 (2) C16—C15—H15 120.7
C21—O3—Mn1 146.0 (2) C17—C16—C15 118.7 (3)
Mn1—O5—H5A 115.1 C17—C16—H16 120.6
Mn1—O5—H5B 117.1 C15—C16—H16 120.6
H5A—O5—H5B 107.7 C16—C17—C18 119.1 (3)
C13—N1—C1 116.3 (3) C16—C17—H17 120.5
C13—N1—Mn1 122.0 (2) C18—C17—H17 120.5
C1—N1—Mn1 121.7 (2) N6—C18—C17 123.5 (3)
C7—N2—C1 114.7 (3) N6—C18—H18 118.3
C13—N3—C7 114.7 (3) C17—C18—H18 118.3
C6—N4—C2 117.3 (3) O1—C19—O2 120.4 (3)
C6—N4—Mn1 123.9 (2) O1—C19—C20 120.2 (3)
C2—N4—Mn1 118.8 (2) O2—C19—C20 119.3 (3)
C12—N5—C8 117.4 (3) O1—C19—Mn1 60.06 (17)
C18—N6—C14 116.9 (3) O2—C19—Mn1 60.56 (17)
C18—N6—Mn1 124.3 (2) C20—C19—Mn1 174.2 (3)
C14—N6—Mn1 118.8 (2) C19—C20—H20A 109.5
N1—C1—N2 124.5 (3) C19—C20—H20B 109.5
N1—C1—C2 116.6 (3) H20A—C20—H20B 109.5
N2—C1—C2 118.9 (3) C19—C20—H20C 109.5
N4—C2—C3 123.2 (3) H20A—C20—H20C 109.5
N4—C2—C1 114.5 (3) H20B—C20—H20C 109.5
C3—C2—C1 122.3 (3) O4—C21—O3 124.0 (3)
C4—C3—C2 118.4 (3) O4—C21—C22 118.6 (3)
C4—C3—H3 120.8 O3—C21—C22 117.2 (3)
C2—C3—H3 120.8 C21—C22—H22A 109.5
C3—C4—C5 119.4 (3) C21—C22—H22B 109.5
C3—C4—H4 120.3 H22A—C22—H22B 109.5
C5—C4—H4 120.3 C21—C22—H22C 109.5
C4—C5—C6 118.7 (3) H22A—C22—H22C 109.5
C4—C5—H5 120.7 H22B—C22—H22C 109.5
C6—C5—H5 120.7 H6A—O6—H6B 104.7
O3—Mn1—O1—C19 91.6 (2) C6—N4—C2—C1 178.7 (3)
O5—Mn1—O1—C19 −89.8 (2) Mn1—N4—C2—C1 −0.6 (3)
O2—Mn1—O1—C19 −2.90 (19) N1—C1—C2—N4 −1.4 (4)
N1—Mn1—O1—C19 −177.55 (19) N2—C1—C2—N4 −179.7 (3)
N4—Mn1—O1—C19 −177.8 (2) N1—C1—C2—C3 178.2 (3)
N6—Mn1—O1—C19 −1.7 (3) N2—C1—C2—C3 −0.2 (5)
O3—Mn1—O2—C19 −90.5 (2) N4—C2—C3—C4 0.8 (5)
O5—Mn1—O2—C19 97.1 (2) C1—C2—C3—C4 −178.7 (3)
O1—Mn1—O2—C19 2.86 (18) C2—C3—C4—C5 0.4 (5)
N1—Mn1—O2—C19 176.6 (2) C3—C4—C5—C6 −1.6 (5)
N4—Mn1—O2—C19 10.3 (2) C2—N4—C6—C5 −0.4 (5)
N6—Mn1—O2—C19 −176.4 (2) Mn1—N4—C6—C5 178.8 (2)
O5—Mn1—O3—C21 145.7 (5) C4—C5—C6—N4 1.6 (5)
O1—Mn1—O3—C21 −42.1 (5) C1—N2—C7—N3 1.2 (4)
O2—Mn1—O3—C21 15.4 (5) C1—N2—C7—C8 −177.5 (3)
N1—Mn1—O3—C21 169.2 (5) C13—N3—C7—N2 −2.3 (4)
N4—Mn1—O3—C21 −122.8 (5) C13—N3—C7—C8 176.4 (3)
N6—Mn1—O3—C21 100.5 (5) C12—N5—C8—C9 −2.0 (5)
C19—Mn1—O3—C21 −13.6 (5) C12—N5—C8—C7 176.9 (3)
O3—Mn1—N1—C13 −85.8 (2) N2—C7—C8—N5 5.5 (4)
O5—Mn1—N1—C13 90.2 (2) N3—C7—C8—N5 −173.4 (3)
O1—Mn1—N1—C13 179.9 (2) N2—C7—C8—C9 −175.6 (3)
O2—Mn1—N1—C13 10.1 (4) N3—C7—C8—C9 5.6 (5)
N4—Mn1—N1—C13 −179.9 (3) N5—C8—C9—C10 1.7 (6)
N6—Mn1—N1—C13 2.6 (2) C7—C8—C9—C10 −177.2 (3)
O3—Mn1—N1—C1 91.8 (2) C8—C9—C10—C11 −0.3 (6)
O5—Mn1—N1—C1 −92.2 (2) C9—C10—C11—C12 −0.7 (6)
O1—Mn1—N1—C1 −2.5 (3) C8—N5—C12—C11 1.0 (5)
O2—Mn1—N1—C1 −172.3 (2) C10—C11—C12—N5 0.3 (5)
N4—Mn1—N1—C1 −2.2 (2) C1—N1—C13—N3 −0.1 (5)
N6—Mn1—N1—C1 −179.8 (2) Mn1—N1—C13—N3 177.7 (2)
O3—Mn1—N4—C6 98.8 (3) C1—N1—C13—C14 178.9 (3)
O5—Mn1—N4—C6 −91.3 (3) Mn1—N1—C13—C14 −3.3 (4)
O1—Mn1—N4—C6 2.1 (2) C7—N3—C13—N1 1.7 (4)
O2—Mn1—N4—C6 −4.3 (3) C7—N3—C13—C14 −177.3 (3)
N1—Mn1—N4—C6 −177.8 (3) C18—N6—C14—C15 0.1 (4)
N6—Mn1—N4—C6 −174.5 (2) Mn1—N6—C14—C15 179.4 (2)
C19—Mn1—N4—C6 1.0 (3) C18—N6—C14—C13 −178.9 (3)
O3—Mn1—N4—C2 −82.1 (2) Mn1—N6—C14—C13 0.4 (3)
O5—Mn1—N4—C2 87.9 (2) N1—C13—C14—N6 1.8 (4)
O1—Mn1—N4—C2 −178.8 (2) N3—C13—C14—N6 −179.2 (3)
O2—Mn1—N4—C2 174.93 (19) N1—C13—C14—C15 −177.2 (3)
N1—Mn1—N4—C2 1.4 (2) N3—C13—C14—C15 1.8 (4)
N6—Mn1—N4—C2 4.7 (3) N6—C14—C15—C16 −0.1 (5)
C19—Mn1—N4—C2 −179.9 (2) C13—C14—C15—C16 178.8 (3)
O3—Mn1—N6—C18 −96.7 (3) C14—C15—C16—C17 0.3 (5)
O5—Mn1—N6—C18 90.5 (3) C15—C16—C17—C18 −0.5 (5)
O1—Mn1—N6—C18 0.1 (3) C14—N6—C18—C17 −0.3 (5)
O2—Mn1—N6—C18 1.1 (3) Mn1—N6—C18—C17 −179.6 (3)
N1—Mn1—N6—C18 177.8 (3) C16—C17—C18—N6 0.5 (5)
N4—Mn1—N6—C18 174.5 (2) Mn1—O1—C19—O2 5.1 (3)
C19—Mn1—N6—C18 −0.8 (3) Mn1—O1—C19—C20 −173.3 (3)
O3—Mn1—N6—C14 84.0 (2) Mn1—O2—C19—O1 −5.1 (3)
O5—Mn1—N6—C14 −88.8 (2) Mn1—O2—C19—C20 173.3 (3)
O1—Mn1—N6—C14 −179.1 (2) O3—Mn1—C19—O1 −91.9 (2)
O2—Mn1—N6—C14 −178.2 (2) O5—Mn1—C19—O1 91.6 (2)
N1—Mn1—N6—C14 −1.5 (2) O2—Mn1—C19—O1 174.9 (3)
N4—Mn1—N6—C14 −4.8 (3) N4—Mn1—C19—O1 2.3 (2)
C19—Mn1—N6—C14 179.9 (2) N6—Mn1—C19—O1 178.84 (19)
C13—N1—C1—N2 −1.2 (4) O3—Mn1—C19—O2 93.1 (2)
Mn1—N1—C1—N2 −178.9 (2) O5—Mn1—C19—O2 −83.31 (19)
C13—N1—C1—C2 −179.4 (3) O1—Mn1—C19—O2 −174.9 (3)
Mn1—N1—C1—C2 2.8 (4) N4—Mn1—C19—O2 −172.65 (18)
C7—N2—C1—N1 0.6 (4) N6—Mn1—C19—O2 3.9 (2)
C7—N2—C1—C2 178.9 (3) Mn1—O3—C21—O4 −167.0 (3)
C6—N4—C2—C3 −0.9 (5) Mn1—O3—C21—C22 18.2 (7)
Mn1—N4—C2—C3 179.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5A···N5i 0.84 2.16 2.924 (3) 151.
O5—H5B···O6ii 0.84 1.88 2.704 (3) 168.
O6—H6A···O2 0.84 1.95 2.791 (3) 175.
O6—H6B···O4iii 0.84 1.87 2.711 (4) 176.
C3—H3···O5iv 0.95 2.46 3.399 (4) 170.
C5—H5···O3i 0.95 2.59 3.338 (4) 136.
C6—H6···O1 0.95 2.33 2.983 (4) 125.
C18—H18···O2 0.95 2.55 3.198 (4) 125.

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z; (iii) −x+2, −y, −z+1; (iv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5206).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Drew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L. & Madic, C. (1998). Acta Cryst. C54, 985–987.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Ha, K. (2010). Acta Cryst. E66, m262. [DOI] [PMC free article] [PubMed]
  5. Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m591–m592. [DOI] [PMC free article] [PubMed]
  6. Majumder, A., Pilet, G., Rodriguez, M. T. G. & Mitra, S. (2006). Polyhedron, 25, 2550–2558.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Zhang, M., Fang, R. & Zhao, Q. (2008). J. Chem. Crystallogr. 38, 601–604.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811032016/ng5206sup1.cif

e-67-m1238-sup1.cif (26.3KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES