Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2507–o2508. doi: 10.1107/S1600536811034106

2-Amino-4-methyl-6-oxo-3,6-dihydro­pyrimidin-1-ium perchlorate–2-amino-6-methyl­pyrimidin-4(1H)-one–water (1/1/1)

Kamel Kaabi a, Maher El Glaoui a, Valeria Ferretti b, Matthias Zeller c, Cherif Ben Nasr a,*
PMCID: PMC3200758  PMID: 22065517

Abstract

In the title compound, C5H8N3O+·ClO4 ·C5H7N3O·H2O, each perchlorate anion is paired with a protonated cationic 2-amino-6-methyl­pyrimidin-4(1H)-one and another non-protonated entity of the same organic pyrimidinone. The crystal structure is stabilized by N—H⋯Oorg, N—H⋯Owater, N—H⋯OClO4, O—H⋯OClO4, N—H⋯N and C—H⋯OClO4 hydrogen bonds between the anions, organic entities and water mol­ecules. Inter­molecular π–π stacking inter­actions between neighbouring organic rings are observed with a face-to-face distance of 3.776 (2) Å, and O—H⋯O hydrogen bonds link the perchlorate anions and the water mol­ecules into chains along the b-axis direction. The perchlorate anion and the inter­stitial water mol­ecule are disordered over two mutually incompatible positions with a common occupancy ratio of 0.678 (16):0.322 (16).

Related literature

For general background to perchlorate salts with organic cations, see: Czarnecki et al. (1994); Czupinski et al. (2002, 2006). For enamine-imino resonance, see: Oueslati et al. (2007). For π–π stacking inter­actions, see: Janiak (2000).graphic file with name e-67-o2507-scheme1.jpg

Experimental

Crystal data

  • C5H8N3O+·ClO4 ·C5H7N3O·H2O

  • M r = 368.75

  • Monoclinic, Inline graphic

  • a = 10.3669 (3) Å

  • b = 10.4342 (3) Å

  • c = 15.0780 (5) Å

  • β = 92.751 (2)°

  • V = 1629.11 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 K

  • 0.30 × 0.15 × 0.12 mm

Data collection

  • Nonius Kappa CCD diffractometer

  • 7792 measured reflections

  • 4739 independent reflections

  • 2765 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.184

  • S = 1.02

  • 4739 reflections

  • 279 parameters

  • 64 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: Kappa CCD server software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al.,1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1983, 1995), WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034106/bx2369sup1.cif

e-67-o2507-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034106/bx2369Isup2.hkl

e-67-o2507-Isup2.hkl (227.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034106/bx2369Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1WA—H2WA⋯O2 0.82 (2) 2.26 (6) 3.07 (4) 169 (16)
C5—H5B⋯O3′ 0.96 2.55 3.509 (6) 173
N5—H5⋯O1WB 0.86 1.95 2.797 (8) 166
O1WB—H2WB⋯O4′ 0.82 (2) 2.30 (4) 3.071 (14) 159 (6)
N1—H1⋯N4i 0.86 1.98 2.839 (2) 174
N3—H3B⋯O6i 0.86 1.93 2.787 (2) 178
N6—H6A⋯O5i 0.86 2.05 2.895 (2) 168
N2—H2⋯O6ii 0.86 1.84 2.6560 (18) 158
N3—H3A⋯O5ii 0.86 2.24 3.0363 (18) 154
N6—H6B⋯O1iii 0.86 2.35 3.095 (17) 145
C3—H3⋯O1iv 0.93 2.56 3.466 (17) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

Perchlorate salts containing organic cations have been studied extensively in recent years owing to some of their interesting properties such as e.g. ferroelectric and dielectric behaviour (Czarnecki et al., 1994; Czupinski et al., 2002; Czupinski et al., 2006). Here, we report the synthesis and the crystal structure of one such compound, (C5H8N3O)(C5H7N3O)ClO4.H2O.

The crystal structure of the title compound (Fig.1) contains one perchlorate anion, one water molecule, and two 2-amino-6-methylpyrimidin-4(1H)-one molecules. One of these molecules is protonated at the nitrogen atom of the six membered ring, thus formally changing the molecule into a 2-amino-4-methyl-6-oxo-3,6-dihydropyrimidin-1-ium cation. The atomic arrangement of (C5H8N3O)(C5H7N3O)ClO4.H2O can be divided into an organic and an inorganic part. The inorganic section is composed of chains of [ClO4]- tetrahedra and water molecules that extend along the b axis direction, held together by Owater—H···O(ClO4) hydrogen bonds. Two such chains cross the unit cell at z = (2n +1)/4 and x = 0.5 (Fig. 2, Table 1). The organic groups are located between these chains and connect to them through N—H···Owater, N—H···O(ClO4) and C—H···O(ClO4) hydrogen bonds to form a three dimensional infinite network (Fig. 3, Table 1). Of the hydrogen bonds, one is bifurcted: O1WA—H2WA···(O2, O4) (Fig. 2, Table 1). The organic entities are associated with each other via N—H···Oorg and N—H···N hydrogen bonds (Fig. 3, Table 1). Intermolecular π-π stacking interactions between neighbouring organic rings are observed with a face-to-face distance of 3.776 (2) Å, less than 3.8 Å, the maximum regarded as relevant for π-π interactions (Janiak, 2000).

The C—N bond distances of the NH2 groups, N3—C1 and N6—C6, are 1.311 (2) and 1.327 (2) Å, respectively, which is short for a C—N single bond, but still not quite as contracted as one would expect for a fully established C=N double bond. These bond length features are consistent with an imino resonance form as it is commonly found for C—N single bonds involving sp2 hybridized C and N atoms (Oueslati et al., 2007). The distance values of C2—O5 [1.233 (2) Å] and C7—O6 [1.260 (2) Å] clearly indicate two C=O double bonds. This confirms that the first step of the formation of the title compound consists in the tautomerization of the starting material 2-amino-4-hydroxy-6-methylpyrimidine into 2-amino-6-methylpyrimidin-4(1H)-one.

Experimental

An aqueous solution of Cu(ClO4)2 (1 mmol, 0.263 g) was added dropwise to a solution of 2-amino-4-hydroxy-6-methylpyrimidine (1 mmol, 0.125 g) in ethanol. The resultant mixture was evaporated at room temperature. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated after several days and subjected to X-ray diffraction analysis (yield 56%).

Refinement

Reflections (1 1 0), (1 0 0), (-1 0 2), (0 0 2), (0 1 1), (-1 1 1) and (-1 1 2) were obscured by the beamstop and were omitted from the refinement. The oxygen atoms of the perchlorate ion were refined as disordered over two mutually exclusive sets of positions with a refined occupancy ratio of 0.678 (16) to 0.322 (16) for the two orientations. Associated with the perchlorate disorder is disorder of a water molecule, which is distributed over two positions in the same ratio as the anions. All Cl—O bond distances and O···O distances within each disordered moiety were restrained to be eadch the same within a standard deviation of 0.02 Å. C—H and N—H hydrogen atoms were placed in calculated positions with C—H distances of 0.93 and 0.96 Å and N—H distances of 0.86 Å. The the water hydrogen atom postitions were refined with O—H distance restraints of 0.82 (2) Å and H···H distance restraints within each water molecule of 1.35 (2) Å. Uiso(H) values of all H atoms were constrained to 1.2 (amine, C—H) or 1.5 (CH3, O—H) times Ueq of the respective parent atom.

Figures

Fig. 1.

Fig. 1.

A view of the title compound, showing 50% probability displacement ellipsoids, arbitrary spheres for the H atoms, and the atom numbering scheme.

Fig. 2.

Fig. 2.

Packing of the title compound viewed down the b axis, showing the hydrogen bonding scheme between the water molecules, perchlorate anions and organic entities. Disorder of perchlorate anions and of water molecules is omitted for clarity.

Fig. 3.

Fig. 3.

Crystal packing arrangement showing the hydrogen bonding scheme between the organic entities. Hydrogen bonds are denoted by dotted lines. Disorder of perchlorate anions and of water molecules is omitted for clarity.

Crystal data

C5H8N3O+·ClO4·C5H7N3O·H2O F(000) = 768
Mr = 368.75 Dx = 1.503 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7792 reflections
a = 10.3669 (3) Å θ = 2.0–30.0°
b = 10.4342 (3) Å µ = 0.28 mm1
c = 15.0780 (5) Å T = 295 K
β = 92.751 (2)° Prismatic, colourless
V = 1629.11 (9) Å3 0.30 × 0.15 × 0.12 mm
Z = 4

Data collection

Nonius Kappa CCD diffractometer 2765 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
graphite θmax = 30.1°, θmin = 3.9°
φ scans and ω scans h = −14→14
7792 measured reflections k = −13→14
4739 independent reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.1048P)2 + 0.0794P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
4739 reflections Δρmax = 0.38 e Å3
279 parameters Δρmin = −0.47 e Å3
64 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.033 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O5 0.98648 (14) 0.24064 (14) 0.41381 (8) 0.0481 (4)
N1 0.98287 (15) 0.26652 (14) 0.56248 (9) 0.0370 (4)
H1 1.0315 0.3329 0.5589 0.044*
N2 0.87048 (15) 0.12750 (14) 0.64911 (9) 0.0386 (4)
H2 0.8495 0.1022 0.7007 0.046*
N3 0.98691 (18) 0.29455 (16) 0.71393 (10) 0.0489 (4)
H3A 0.9635 0.2717 0.7656 0.059*
H3B 1.0363 0.3600 0.7086 0.059*
C1 0.94722 (17) 0.22960 (16) 0.64336 (11) 0.0357 (4)
C2 0.94490 (18) 0.20263 (17) 0.48438 (11) 0.0384 (4)
C3 0.85884 (19) 0.09806 (19) 0.49410 (12) 0.0452 (5)
H3 0.8263 0.0545 0.4441 0.054*
C4 0.82387 (18) 0.06148 (17) 0.57560 (12) 0.0407 (4)
C5 0.7351 (2) −0.0476 (2) 0.59327 (15) 0.0579 (6)
H5A 0.7149 −0.0929 0.5390 0.087*
H5B 0.6569 −0.0151 0.6165 0.087*
H5C 0.7763 −0.1048 0.6357 0.087*
Cl1 0.32526 (6) 0.13475 (6) 0.68097 (4) 0.0630 (2)
O1 0.2053 (11) 0.0786 (17) 0.6977 (12) 0.098 (5) 0.322 (16)
O2 0.308 (2) 0.2428 (18) 0.6303 (18) 0.206 (11) 0.322 (16)
O3 0.3952 (12) 0.0439 (15) 0.6352 (11) 0.109 (4) 0.322 (16)
O4 0.3901 (18) 0.161 (3) 0.7605 (10) 0.163 (9) 0.322 (16)
O1' 0.2309 (8) 0.0465 (8) 0.7085 (4) 0.100 (2) 0.678 (16)
O2' 0.2776 (6) 0.2018 (6) 0.6061 (3) 0.0944 (18) 0.678 (16)
O3' 0.4372 (9) 0.0699 (10) 0.6589 (6) 0.133 (3) 0.678 (16)
O4' 0.3540 (11) 0.2203 (8) 0.7502 (5) 0.125 (3) 0.678 (16)
O1WA 0.559 (2) 0.3844 (18) 0.6839 (13) 0.097 (5) 0.322 (16)
H1WA 0.543 (12) 0.457 (6) 0.702 (10) 0.146* 0.322 (16)
H2WA 0.493 (7) 0.342 (10) 0.676 (11) 0.146* 0.322 (16)
O1WB 0.6081 (9) 0.3409 (9) 0.6947 (5) 0.089 (2) 0.678 (16)
H1WB 0.620 (6) 0.387 (5) 0.739 (3) 0.134* 0.678 (16)
H2WB 0.549 (5) 0.292 (5) 0.703 (4) 0.134* 0.678 (16)
O6 0.85711 (15) 0.49047 (14) 0.30449 (8) 0.0523 (4)
N4 0.84030 (15) 0.52739 (15) 0.45051 (9) 0.0389 (4)
N5 0.68242 (16) 0.41812 (16) 0.52703 (11) 0.0481 (4)
H5 0.6483 0.4026 0.5768 0.058*
N6 0.82368 (19) 0.55766 (18) 0.59950 (11) 0.0582 (5)
H6A 0.8880 0.6097 0.5994 0.070*
H6B 0.7866 0.5420 0.6482 0.070*
C6 0.78157 (18) 0.50162 (17) 0.52456 (12) 0.0410 (4)
C7 0.79858 (19) 0.46791 (18) 0.37411 (12) 0.0417 (4)
C8 0.6914 (2) 0.3822 (2) 0.37529 (14) 0.0538 (5)
H8 0.6605 0.3434 0.3230 0.065*
C9 0.6351 (2) 0.3576 (2) 0.45156 (14) 0.0508 (5)
C10 0.5254 (3) 0.2665 (3) 0.46219 (18) 0.0743 (7)
H10A 0.4962 0.2344 0.4050 0.111*
H10B 0.4558 0.3103 0.4890 0.111*
H10C 0.5538 0.1963 0.4994 0.111*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5 0.0660 (9) 0.0544 (8) 0.0244 (6) −0.0120 (7) 0.0079 (6) −0.0008 (5)
N1 0.0466 (9) 0.0390 (8) 0.0257 (7) −0.0069 (6) 0.0037 (6) −0.0001 (6)
N2 0.0459 (9) 0.0422 (8) 0.0281 (7) −0.0032 (6) 0.0066 (6) 0.0057 (6)
N3 0.0691 (11) 0.0525 (9) 0.0256 (7) −0.0143 (8) 0.0069 (7) 0.0002 (7)
C1 0.0412 (10) 0.0392 (9) 0.0269 (8) 0.0025 (7) 0.0041 (7) 0.0035 (7)
C2 0.0454 (10) 0.0436 (9) 0.0264 (8) −0.0001 (8) 0.0039 (7) −0.0011 (7)
C3 0.0527 (12) 0.0493 (10) 0.0335 (9) −0.0091 (9) 0.0005 (8) −0.0039 (8)
C4 0.0415 (10) 0.0420 (9) 0.0388 (9) −0.0020 (8) 0.0030 (8) 0.0032 (8)
C5 0.0631 (14) 0.0588 (13) 0.0523 (12) −0.0214 (11) 0.0065 (10) 0.0013 (10)
Cl1 0.0656 (4) 0.0782 (4) 0.0458 (3) −0.0041 (3) 0.0098 (3) −0.0022 (3)
O1 0.053 (5) 0.129 (10) 0.116 (11) −0.008 (5) 0.037 (5) −0.013 (7)
O2 0.25 (2) 0.100 (10) 0.28 (2) 0.081 (11) 0.129 (16) 0.109 (12)
O3 0.064 (6) 0.143 (8) 0.120 (8) 0.019 (5) 0.000 (5) −0.057 (7)
O4 0.125 (11) 0.28 (3) 0.081 (7) −0.063 (14) −0.040 (7) −0.040 (12)
O1' 0.147 (6) 0.103 (4) 0.050 (2) −0.066 (4) 0.023 (3) −0.003 (2)
O2' 0.111 (3) 0.114 (4) 0.058 (2) 0.019 (3) 0.005 (2) 0.025 (2)
O3' 0.090 (5) 0.173 (7) 0.137 (6) 0.060 (5) 0.026 (4) 0.024 (4)
O4' 0.145 (6) 0.139 (5) 0.091 (4) −0.052 (4) 0.010 (3) −0.053 (3)
O1WA 0.117 (12) 0.095 (10) 0.083 (9) −0.046 (8) 0.044 (9) −0.025 (7)
O1WB 0.108 (5) 0.096 (5) 0.063 (2) −0.035 (3) 0.008 (3) 0.013 (3)
O6 0.0736 (10) 0.0537 (8) 0.0303 (7) −0.0154 (7) 0.0105 (7) −0.0060 (6)
N4 0.0467 (9) 0.0413 (8) 0.0292 (7) −0.0049 (7) 0.0057 (6) −0.0030 (6)
N5 0.0461 (9) 0.0579 (10) 0.0412 (8) −0.0084 (8) 0.0100 (7) 0.0035 (7)
N6 0.0717 (12) 0.0730 (12) 0.0312 (8) −0.0255 (10) 0.0160 (8) −0.0090 (8)
C6 0.0465 (10) 0.0425 (9) 0.0346 (9) −0.0010 (8) 0.0076 (8) −0.0003 (7)
C7 0.0500 (11) 0.0432 (10) 0.0321 (8) −0.0030 (8) 0.0029 (8) −0.0029 (7)
C8 0.0576 (13) 0.0617 (12) 0.0415 (10) −0.0159 (10) −0.0029 (9) −0.0029 (9)
C9 0.0449 (11) 0.0559 (11) 0.0513 (11) −0.0096 (9) −0.0010 (9) 0.0020 (10)
C10 0.0633 (16) 0.0858 (18) 0.0738 (16) −0.0298 (13) 0.0041 (13) 0.0066 (14)

Geometric parameters (Å, °)

O5—C2 1.233 (2) Cl1—O1 1.408 (10)
N1—C1 1.347 (2) Cl1—O1' 1.419 (5)
N1—C2 1.393 (2) O1WA—H1WA 0.82 (2)
N1—H1 0.8600 O1WA—H2WA 0.82 (2)
N2—C1 1.335 (2) O1WB—H1WB 0.831 (19)
N2—C4 1.373 (2) O1WB—H2WB 0.82 (2)
N2—H2 0.8600 O6—C7 1.260 (2)
N3—C1 1.311 (2) N4—C6 1.325 (2)
N3—H3A 0.8600 N4—C7 1.361 (2)
N3—H3B 0.8600 N5—C6 1.349 (2)
C2—C3 1.421 (3) N5—C9 1.371 (3)
C3—C4 1.353 (2) N5—H5 0.8600
C3—H3 0.9300 N6—C6 1.327 (2)
C4—C5 1.496 (3) N6—H6A 0.8600
C5—H5A 0.9600 N6—H6B 0.8600
C5—H5B 0.9600 C7—C8 1.427 (3)
C5—H5C 0.9600 C8—C9 1.339 (3)
Cl1—O2 1.369 (10) C8—H8 0.9300
Cl1—O4 1.373 (10) C9—C10 1.497 (3)
Cl1—O4' 1.395 (5) C10—H10A 0.9600
Cl1—O3 1.396 (10) C10—H10B 0.9600
Cl1—O3' 1.397 (6) C10—H10C 0.9600
Cl1—O2' 1.398 (4)
C1—N1—C2 123.33 (15) O2—Cl1—O1 110.4 (9)
C1—N1—H1 118.3 O4—Cl1—O1 109.0 (9)
C2—N1—H1 118.3 O3—Cl1—O1 106.8 (8)
C1—N2—C4 122.40 (14) O4'—Cl1—O1' 108.8 (4)
C1—N2—H2 118.8 O3'—Cl1—O1' 110.3 (4)
C4—N2—H2 118.8 O2'—Cl1—O1' 109.8 (4)
C1—N3—H3A 120.0 H1WA—O1WA—H2WA 111 (4)
C1—N3—H3B 120.0 H1WB—O1WB—H2WB 109 (3)
H3A—N3—H3B 120.0 C6—N4—C7 118.73 (15)
N3—C1—N2 121.65 (15) C6—N5—C9 121.13 (16)
N3—C1—N1 119.85 (16) C6—N5—H5 119.4
N2—C1—N1 118.50 (15) C9—N5—H5 119.4
O5—C2—N1 118.64 (16) C6—N6—H6A 120.0
O5—C2—C3 125.68 (16) C6—N6—H6B 120.0
N1—C2—C3 115.68 (15) H6A—N6—H6B 120.0
C4—C3—C2 120.48 (17) N4—C6—N6 118.84 (17)
C4—C3—H3 119.8 N4—C6—N5 122.41 (16)
C2—C3—H3 119.8 N6—C6—N5 118.74 (16)
C3—C4—N2 119.50 (16) O6—C7—N4 118.29 (16)
C3—C4—C5 124.79 (18) O6—C7—C8 122.28 (17)
N2—C4—C5 115.70 (16) N4—C7—C8 119.43 (16)
C4—C5—H5A 109.5 C9—C8—C7 120.16 (19)
C4—C5—H5B 109.5 C9—C8—H8 119.9
H5A—C5—H5B 109.5 C7—C8—H8 119.9
C4—C5—H5C 109.5 C8—C9—N5 118.10 (18)
H5A—C5—H5C 109.5 C8—C9—C10 125.3 (2)
H5B—C5—H5C 109.5 N5—C9—C10 116.56 (19)
O2—Cl1—O4 111.9 (9) C9—C10—H10A 109.5
O2—Cl1—O3 109.9 (9) C9—C10—H10B 109.5
O4—Cl1—O3 108.7 (8) H10A—C10—H10B 109.5
O4'—Cl1—O3' 109.8 (5) C9—C10—H10C 109.5
O4'—Cl1—O2' 109.8 (4) H10A—C10—H10C 109.5
O3'—Cl1—O2' 108.4 (4) H10B—C10—H10C 109.5
C4—N2—C1—N3 177.34 (17) C7—N4—C6—N6 178.73 (18)
C4—N2—C1—N1 −1.9 (3) C7—N4—C6—N5 0.4 (3)
C2—N1—C1—N3 179.95 (17) C9—N5—C6—N4 −1.6 (3)
C2—N1—C1—N2 −0.8 (3) C9—N5—C6—N6 179.98 (19)
C1—N1—C2—O5 −177.23 (18) C6—N4—C7—O6 −178.20 (18)
C1—N1—C2—C3 3.4 (3) C6—N4—C7—C8 1.5 (3)
O5—C2—C3—C4 177.18 (19) O6—C7—C8—C9 177.6 (2)
N1—C2—C3—C4 −3.4 (3) N4—C7—C8—C9 −2.1 (3)
C2—C3—C4—N2 1.1 (3) C7—C8—C9—N5 0.9 (3)
C2—C3—C4—C5 −179.47 (19) C7—C8—C9—C10 −177.8 (2)
C1—N2—C4—C3 1.8 (3) C6—N5—C9—C8 1.0 (3)
C1—N2—C4—C5 −177.75 (17) C6—N5—C9—C10 179.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1WA—H2WA···O2 0.82 (2) 2.26 (6) 3.07 (4) 169 (16)
C5—H5B···O3' 0.96 2.55 3.509 (6) 173.
N5—H5···O1WB 0.86 1.95 2.797 (8) 166.
O1WB—H2WB···O4' 0.82 (2) 2.30 (4) 3.071 (14) 159 (6)
N1—H1···N4i 0.86 1.98 2.839 (2) 174.
N3—H3B···O6i 0.86 1.93 2.787 (2) 178.
N6—H6A···O5i 0.86 2.05 2.895 (2) 168.
N2—H2···O6ii 0.86 1.84 2.6560 (18) 158.
N3—H3A···O5ii 0.86 2.24 3.0363 (18) 154.
N6—H6B···O1iii 0.86 2.35 3.095 (17) 145.
C3—H3···O1iv 0.93 2.56 3.466 (17) 166.

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2369).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Czarnecki, P., Nawrocik, W., Pajaxk, Z. & Nawrocik, J. (1994). J. Phys. Condens. Matter, 6, 4955–4960.
  4. Czupinski, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Wiergiel, J. S. (2002). J. Phys. Condens. Matter, 14, 8497–8512.
  5. Czupinski, O., Wojtas, M., Zaleski, J., Jakubas, R. & Medycki, W. (2006). J. Phys. Condens. Matter, 88, 3307–3324.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  8. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  9. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  10. Nonius (1997). KappaCCD Software. Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. [DOI] [PubMed]
  12. Oueslati, A., Kefi, R., Ben Nasr, C. & Lefebvre, F. (2007). J. Mol. Struct. 871, 49–58.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034106/bx2369sup1.cif

e-67-o2507-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034106/bx2369Isup2.hkl

e-67-o2507-Isup2.hkl (227.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034106/bx2369Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES