Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 6;67(Pt 9):o2269–o2270. doi: 10.1107/S1600536811030844

2-Oxochromen-4-yl 4-(dimethyl­amino)­benzoate

Akoun Abou a,*, Abdoulaye Djandé b, Bintou Sessouma b, Adama Saba b, Rita Kakou-Yao a
PMCID: PMC3200765  PMID: 22058924

Abstract

In the title mol­ecule, C18H15NO4, the benzoate ring is oriented at a dihedral angle of 43.43 (6)° with respect to the planar [maximum deviation = 0.038 (2) Å] chromene ring. The crystal structure features R 2 2(12) centrosymetric dimers formed via C—H⋯O inter­actions and these dimeric aggregates are connected by C—H⋯π inter­actions.

Related literature

For the biological activity of coumarin derivatives, see: Ukhov et al. (2001); Abd Elhafez et al. (2003); Basanagouda et al. (2009); Liu et al. (2008); Trapkov et al. (1996); Vukovic et al. (2010); Emmanuel-Giota et al. (2001); Hamdi & Dixneuf (2007); Wang et al. (2001); Marchenko et al. (2006). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).graphic file with name e-67-o2269-scheme1.jpg

Experimental

Crystal data

  • C18H15NO4

  • M r = 309.32

  • Triclinic, Inline graphic

  • a = 7.4939 (2) Å

  • b = 10.2361 (3) Å

  • c = 10.6620 (3) Å

  • α = 92.307 (3)°

  • β = 103.935 (1)°

  • γ = 109.852 (2)°

  • V = 739.92 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.30 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 8424 measured reflections

  • 3590 independent reflections

  • 2897 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.120

  • S = 0.98

  • 3585 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030844/tk2767sup1.cif

e-67-o2269-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030844/tk2767Isup2.hkl

e-67-o2269-Isup2.hkl (179.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030844/tk2767Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C15–C18/C22/C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H91⋯O8i 0.96 2.49 3.449 (2) 171
C7—H71⋯Cg3ii 0.95 2.84 3.429 (2) 121
C20—H202⋯Cg3iii 0.99 2.91 3.777 (2) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the Laboratoire de Physique des Inter­actions Ioniques and Spectropôle, Université de Provence, and the Université Paul Cézanne, Faculté des Sciences et Techniques de Saint Jérôme, Marseille, France, for the use of their diffractometer.

supplementary crystallographic information

Comment

Coumarin constitutes one of the major classes of naturally occurring compounds, and interest in its chemistry continues unabated because of its usefulness as biologically active agents. It also represents the core structure of several molecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Ukhov et al., 2001; Abd Elhafez et al., 2003; Basanagouda et al., 2009; Liu et al., 2008), anti-oxidant (Trapkov et al., 1996; Vukovic et al., 2010), anti-inflammatory (Emmanuel-Giota et al., 2001; Hamdi & Dixneuf, 2007), anti-coagulant (Hamdi et al., 2007) and anti-tumour (Wang et al., 2001; Marchenko et al., 2006) agents. Therefore, the synthesis of new coumarin derivatives is of considerable interest. In order to study the influence of new substituents on the activity of the coumarin derivative, the title compound, (I), has been synthesized and in this paper, we present its molecular structure, Fig. 1.

In (I), the planar chromene ring system resulting from the two coupled rings (benzene and 3,6-dihydro-2H-pyran) is oriented with respect to the benzoate-benzene ring at a dihedral angle of 43.43 (6)°. Atoms O14, N19, C13 and C21 are 0.046 (1), 0.052 (1), 0.079 (2) and 0.077 (3) Å out of the plane of the benzoate-benzene ring, respectively, so, they are coplanar with this ring.

In the crystal structure, intermolecular C—H···O interactions (Table 1) link the molecules into centrosymmetric dimers through R22(12) ring motifs (Bernstein et al., 1995) (Fig. 2). Two weak C—H···π interactions formed between the H71 and H202 atoms and the centroid Cg3 of the benzoate-benzene ring (Table 1 and Fig. 3) further stabilize the structure.

Experimental

To a solution of 4.10-2 mole of paradimethylamino benzoyl chloride in 150 ml of dried tetrahydrofuran, was added 0.12 mole of dried triethylamine and 4.10-2 mole of 4-hydroxycoumarin by small portions over 30 min. The mixture was then refluxed for 3 h and poured in 300 ml of chloroform or dichloromethane. The solution was acidified with dilute hydrochloric acid until the pH was 2 or 3. The organic layer was extracted, washed with water, dried over MgSO4 and the solvent removed. The crude product was recrystallized in chloroform. Colourless crystals of the title compound are obtained in a good yield: 82.6%; M.pt. 445 K.

Refinement

The H-atoms were placed at calculated positions and were included in the refinement in the riding model approximation with C—H in the range of 0.94–0.99 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic labeling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing, viewed in projection down the b axis, showing parallel centrosymmetric dimers. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted for clarity.

Fig. 3.

Fig. 3.

Crystal packing, showing C—H···π stacking interactions. The green dots are centroids of rings. H atoms not involved in C—H···π interactions have been omitted for clarity.

Crystal data

C18H15NO4 Z = 2
Mr = 309.32 F(000) = 324
Triclinic, P1 Dx = 1.388 Mg m3
Hall symbol: -P 1 Melting point: 445 K
a = 7.4939 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.2361 (3) Å Cell parameters from 8424 reflections
c = 10.6620 (3) Å θ = 2.0–28.7°
α = 92.307 (3)° µ = 0.10 mm1
β = 103.935 (1)° T = 298 K
γ = 109.852 (2)° Parallelepiped, colourless
V = 739.92 (4) Å3 0.50 × 0.40 × 0.30 mm

Data collection

Nonius KappaCCD diffractometer 2897 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
graphite θmax = 28.7°, θmin = 2.0°
φ and ω scans h = −9→9
8424 measured reflections k = −13→13
3590 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 0.98 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.05P)2 + 0.22P], where P = [max(Fo2,0) + 2Fc2]/3
3585 reflections (Δ/σ)max = 0.00023
208 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.20 e Å3
60 constraints

Special details

Refinement. The 5 reflections 1 0 0; 0 1 0; -1 0 1; 0 0 1; -1 1 1 have been measured with too low intensities. It might be caused by some systematical error, probably by shielding by a beam stop of these diffractions. They were not used in the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.16941 (15) 0.34698 (9) −0.00111 (8) 0.0462
C2 0.13553 (19) 0.27238 (13) −0.11979 (11) 0.0385
C3 0.16678 (17) 0.14123 (12) −0.10953 (12) 0.0363
C4 0.12326 (18) 0.05485 (13) −0.22545 (12) 0.0396
O5 0.05704 (15) 0.09384 (10) −0.34457 (9) 0.0493
C6 0.0349 (2) 0.22168 (15) −0.35487 (13) 0.0480
C7 0.0715 (2) 0.31027 (14) −0.23575 (13) 0.0453
O8 −0.0149 (2) 0.24941 (13) −0.46358 (10) 0.0703
C9 0.1466 (2) −0.07411 (14) −0.22593 (15) 0.0499
C10 0.2154 (2) −0.11591 (15) −0.10867 (16) 0.0531
C11 0.2611 (2) −0.03116 (15) 0.00810 (15) 0.0504
C12 0.2373 (2) 0.09635 (14) 0.00783 (13) 0.0436
C13 0.26101 (19) 0.49181 (13) 0.02252 (12) 0.0394
O14 0.31022 (19) 0.56038 (11) −0.06000 (10) 0.0605
C15 0.29273 (18) 0.54219 (12) 0.15893 (11) 0.0361
C16 0.40333 (19) 0.68335 (13) 0.20353 (12) 0.0399
C17 0.4486 (2) 0.73643 (14) 0.33261 (13) 0.0438
C18 0.38190 (19) 0.64988 (14) 0.42412 (12) 0.0399
N19 0.42952 (19) 0.70056 (13) 0.55279 (11) 0.0513
C20 0.3356 (3) 0.61733 (19) 0.64173 (14) 0.0591
C21 0.5486 (4) 0.8446 (2) 0.59983 (17) 0.0903
C22 0.2647 (2) 0.50796 (14) 0.37750 (12) 0.0422
C23 0.22417 (19) 0.45612 (13) 0.24879 (12) 0.0402
H71 0.0500 0.3963 −0.2441 0.0557*
H91 0.1132 −0.1320 −0.3079 0.0600*
H101 0.2329 −0.2053 −0.1062 0.0641*
H111 0.3097 −0.0605 0.0902 0.0601*
H121 0.2673 0.1552 0.0875 0.0528*
H161 0.4492 0.7442 0.1416 0.0485*
H171 0.5265 0.8322 0.3594 0.0528*
H201 0.3856 0.6702 0.7280 0.0885*
H203 0.1930 0.5921 0.6121 0.0885*
H202 0.3622 0.5286 0.6450 0.0885*
H211 0.5837 0.8563 0.6932 0.1350*
H213 0.4752 0.9046 0.5672 0.1350*
H212 0.6655 0.8711 0.5708 0.1350*
H221 0.2121 0.4466 0.4367 0.0519*
H231 0.1484 0.3589 0.2193 0.0481*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0692 (6) 0.0362 (5) 0.0336 (4) 0.0168 (4) 0.0184 (4) 0.0015 (4)
C2 0.0442 (7) 0.0376 (6) 0.0332 (6) 0.0136 (5) 0.0122 (5) 0.0005 (5)
C3 0.0355 (6) 0.0348 (6) 0.0363 (6) 0.0096 (5) 0.0109 (5) 0.0019 (5)
C4 0.0397 (6) 0.0371 (6) 0.0375 (6) 0.0095 (5) 0.0095 (5) 0.0001 (5)
O5 0.0631 (6) 0.0452 (5) 0.0345 (5) 0.0183 (5) 0.0072 (4) −0.0028 (4)
C6 0.0555 (8) 0.0498 (8) 0.0358 (6) 0.0196 (6) 0.0069 (6) 0.0016 (6)
C7 0.0571 (8) 0.0444 (7) 0.0378 (6) 0.0241 (6) 0.0105 (6) 0.0042 (5)
O8 0.1030 (10) 0.0720 (8) 0.0340 (5) 0.0396 (7) 0.0038 (5) 0.0047 (5)
C9 0.0537 (8) 0.0389 (7) 0.0534 (8) 0.0137 (6) 0.0140 (6) −0.0039 (6)
C10 0.0543 (8) 0.0396 (7) 0.0668 (9) 0.0197 (6) 0.0150 (7) 0.0058 (6)
C11 0.0500 (8) 0.0478 (8) 0.0534 (8) 0.0194 (6) 0.0104 (6) 0.0122 (6)
C12 0.0467 (7) 0.0439 (7) 0.0382 (6) 0.0149 (6) 0.0099 (5) 0.0052 (5)
C13 0.0487 (7) 0.0361 (6) 0.0357 (6) 0.0171 (5) 0.0133 (5) 0.0045 (5)
O14 0.0936 (8) 0.0462 (6) 0.0392 (5) 0.0159 (5) 0.0266 (5) 0.0087 (4)
C15 0.0419 (6) 0.0361 (6) 0.0331 (6) 0.0161 (5) 0.0124 (5) 0.0044 (5)
C16 0.0461 (7) 0.0368 (6) 0.0379 (6) 0.0129 (5) 0.0159 (5) 0.0076 (5)
C17 0.0477 (7) 0.0367 (6) 0.0415 (7) 0.0090 (5) 0.0120 (5) 0.0012 (5)
C18 0.0423 (7) 0.0456 (7) 0.0324 (6) 0.0185 (5) 0.0077 (5) 0.0033 (5)
N19 0.0632 (8) 0.0545 (7) 0.0319 (5) 0.0193 (6) 0.0086 (5) 0.0011 (5)
C20 0.0716 (10) 0.0777 (11) 0.0347 (7) 0.0325 (9) 0.0179 (7) 0.0104 (7)
C21 0.1312 (19) 0.0643 (11) 0.0409 (9) 0.0037 (11) 0.0096 (10) −0.0089 (8)
C22 0.0506 (7) 0.0418 (7) 0.0366 (6) 0.0160 (6) 0.0163 (5) 0.0102 (5)
C23 0.0474 (7) 0.0344 (6) 0.0385 (6) 0.0128 (5) 0.0139 (5) 0.0048 (5)

Geometric parameters (Å, °)

O1—C2 1.3728 (14) C13—C15 1.4586 (16)
O1—C13 1.3885 (15) C15—C16 1.3937 (17)
C2—C3 1.4430 (17) C15—C23 1.3985 (17)
C2—C7 1.3373 (18) C16—C17 1.3762 (17)
C3—C4 1.3920 (16) C16—H161 0.969
C3—C12 1.3958 (17) C17—C18 1.4110 (18)
C4—O5 1.3749 (15) C17—H171 0.944
C4—C9 1.3892 (18) C18—N19 1.3637 (16)
O5—C6 1.3794 (17) C18—C22 1.4121 (18)
C6—C7 1.4425 (18) N19—C20 1.4490 (19)
C6—O8 1.2056 (16) N19—C21 1.433 (2)
C7—H71 0.952 C20—H201 0.967
C9—C10 1.376 (2) C20—H203 0.976
C9—H91 0.965 C20—H202 0.994
C10—C11 1.388 (2) C21—H211 0.958
C10—H101 0.967 C21—H213 0.977
C11—C12 1.3764 (19) C21—H212 0.956
C11—H111 0.965 C22—C23 1.3742 (17)
C12—H121 0.954 C22—H221 0.965
C13—O14 1.1970 (15) C23—H231 0.958
C2—O1—C13 122.05 (10) C13—C15—C23 123.81 (11)
O1—C2—C3 113.36 (10) C16—C15—C23 117.98 (11)
O1—C2—C7 125.23 (12) C15—C16—C17 121.34 (11)
C3—C2—C7 121.35 (11) C15—C16—H161 118.6
C2—C3—C4 117.02 (11) C17—C16—H161 120.1
C2—C3—C12 124.46 (11) C16—C17—C18 120.99 (12)
C4—C3—C12 118.52 (12) C16—C17—H171 118.8
C3—C4—O5 121.54 (11) C18—C17—H171 120.2
C3—C4—C9 121.44 (12) C17—C18—N19 121.52 (12)
O5—C4—C9 117.02 (11) C17—C18—C22 117.38 (11)
C4—O5—C6 121.54 (10) N19—C18—C22 121.10 (12)
O5—C6—C7 117.73 (11) C18—N19—C20 120.85 (12)
O5—C6—O8 116.75 (12) C18—N19—C21 120.98 (13)
C7—C6—O8 125.52 (14) C20—N19—C21 117.41 (13)
C6—C7—C2 120.70 (12) N19—C20—H201 109.4
C6—C7—H71 116.9 N19—C20—H203 110.3
C2—C7—H71 122.4 H201—C20—H203 109.8
C4—C9—C10 118.74 (13) N19—C20—H202 110.5
C4—C9—H91 119.3 H201—C20—H202 109.5
C10—C9—H91 121.9 H203—C20—H202 107.3
C9—C10—C11 120.87 (13) N19—C21—H211 108.5
C9—C10—H101 120.4 N19—C21—H213 110.0
C11—C10—H101 118.7 H211—C21—H213 109.9
C10—C11—C12 120.06 (13) N19—C21—H212 110.5
C10—C11—H111 120.8 H211—C21—H212 109.4
C12—C11—H111 119.2 H213—C21—H212 108.5
C3—C12—C11 120.37 (12) C18—C22—C23 120.82 (12)
C3—C12—H121 118.8 C18—C22—H221 119.6
C11—C12—H121 120.8 C23—C22—H221 119.6
O1—C13—O14 122.43 (11) C15—C23—C22 121.45 (12)
O1—C13—C15 110.44 (10) C15—C23—H231 118.7
O14—C13—C15 127.08 (12) C22—C23—H231 119.9
C13—C15—C16 118.18 (11)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the benzoate-benzene ring (C15–C18/C22/C23).
D—H···A D—H H···A D···A D—H···A
C9—H91···O8i 0.96 2.49 3.449 (2) 171
C7—H71···Cg3ii 0.95 2.84 3.429 (2) 121
C20—H202···Cg3iii 0.99 2.91 3.777 (2) 146

Symmetry codes: (i) −x, −y, −z−1; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2767).

References

  1. Abd Elhafez, O. M., El Khrisy, E. A., Badria, F. & Fathy, A. M. (2003). J. Arch. Pharm. Res. 26, 686–696. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Sandhyarani, P. & Sasal, V. P. J. (2009). Chem. Sci. 121, 485–495.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  6. Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. J. (2001). Heterocycl. Chem. 38, 717–722.
  7. Hamdi, N. & Dixneuf, P. H. (2007). Topics in Heterocyclic Chemistry Berlin, Heidelberg: Springer-Verlag.
  8. Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X. & Zhou, J. (2008). Appl. Microbiol. Biotechnol. 78, 241–247. [DOI] [PubMed]
  9. Marchenko, M. M., Kopyl’chuk, G. P., Shmarakov, I. A., Ketsa, O. V. & Kushnir, V. M. (2006). Pharm. Chem. J. 40, 296–297.
  10. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Trapkov, V. A., Parfenov, E. A. & Smirnov, L. D. (1996). Pharm. Chem. J. 30, 445–447.
  14. Ukhov, S. V., Kon’shin, M. E. & Odegova, T. F. (2001). Pharm. Chem. J. 35, 364–365.
  15. Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15. [DOI] [PubMed]
  16. Wang, M., Wang, L., Li, Y. & Li, Q. (2001). Transition Met. Chem. 26, 307–310.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030844/tk2767sup1.cif

e-67-o2269-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030844/tk2767Isup2.hkl

e-67-o2269-Isup2.hkl (179.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030844/tk2767Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES