Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2462. doi: 10.1107/S1600536811034374

3,4,5-Trihy­droxy­benzohydrazide

Uzma Ashiq a,*, Rifat Ara Jamal a, Sammer Yousuf b
PMCID: PMC3200770  PMID: 22065728

Abstract

In the title compound, C7H8N2O4, the dihedral angle between the aromatic ring and the hydrazide grouping is 21.34 (7)°. In the crystal, the mol­ecules are linked into a three-dimensional network by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For the biological activity of hydrazides, see: Maqsood et al. (2006). For related structures, see: Jamal et al. (2009); Saeed et al. (2008); Zareef et al. (2006).graphic file with name e-67-o2462-scheme1.jpg

Experimental

Crystal data

  • C7H8N2O4

  • M r = 184.15

  • Monoclinic, Inline graphic

  • a = 3.7307 (3) Å

  • b = 22.8402 (18) Å

  • c = 8.7064 (7) Å

  • β = 93.290 (2)°

  • V = 740.65 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 273 K

  • 0.28 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.963, T max = 0.973

  • 4345 measured reflections

  • 1352 independent reflections

  • 1234 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.092

  • S = 1.09

  • 1352 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034374/hb6363sup1.cif

e-67-o2462-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034374/hb6363Isup2.hkl

e-67-o2462-Isup2.hkl (66.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034374/hb6363Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.85 (3) 2.09 (2) 2.8254 (14) 145.0 (19)
N1—H1B⋯O1ii 0.86 (2) 2.24 (2) 2.9960 (15) 146.2 (16)
O2—H2A⋯N2iii 0.91 (3) 1.80 (2) 2.6877 (17) 165 (2)
N2—H2B⋯O3iv 0.88 (2) 2.25 (2) 3.1158 (17) 167.0 (18)
N2—H2C⋯O4v 0.92 (2) 2.454 (18) 3.2255 (18) 141.8 (15)
O3—H3A⋯O4vi 0.89 (2) 1.77 (2) 2.6522 (15) 171 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission (HEC) Pakistan for financial support under the National Research Grants Program for Universities (grant No. 1862/R&D/10).

supplementary crystallographic information

Comment

In order to further explore the biological significance of hydrazides, we have prepared the title compound (I). It was found to be active against DPPH radical scavenging activity and inactive against all fungal strains (Maqsood et al. 2006). The crystal structures of trimethoxybenzohydrazide (Saeed et al. 2008, Zareef et al. 2006) and para hydroxybenzohydrazide (Jamal et al. 2009) analogues of (I) have already been reported.

The molecular structure of (I) is composed of a hydrazide moiety attached to the phenyl ring (Fig. 1). The phenyl ring is almost planar with a maximum deviation of 0.009 (1) Å from the least-squares plane. The bond lengths and angles all are in normal range as in other structurally related compounds (Saeed et al. 2008; Zareef et al., 2006). In the crystal, the molecules are linked to form three-dimensional molecular network via O1—H1A···O2, N1—H1B···O1, O2—H2A···N2, N2—H2B···O3, N2—H2C···O4 and O3—H3A···O4 intermolecular hydrogen bonds (Tab. 1 & Fig. 2).

Experimental

To a solution of methyl-3,4,5-trihydroxybenzoate (3.68 g, 20 mmol) in 75 ml ethanol, hydrazine hydrate (5.0 ml, 100 mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford 3,4,5-trihydroxybenzohydrazide (yield 87%) (Maqsood et al., 2006). Colourless blocks of (I) were grown from a solution of methanol by slow evaporation at room temperature.

Refinement

The H atoms on the N atoms (N–H= 0.92 (2)–0.86 (19) Å) O atoms (O–H= 0.91 (3)–0.85 (19) Å) and Carbon (C–H= 0.961 (18)–0.955 (17) Å) atoms were located in difference Fourier maps and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound I. Only hydrogen atoms involved in hydrogen bonding are shown.

Crystal data

C7H8N2O4 F(000) = 384
Mr = 184.15 Dx = 1.651 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2464 reflections
a = 3.7307 (3) Å θ = 3.0–28.3°
b = 22.8402 (18) Å µ = 0.14 mm1
c = 8.7064 (7) Å T = 273 K
β = 93.290 (2)° Block, colorles
V = 740.65 (10) Å3 0.28 × 0.21 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1352 independent reflections
Radiation source: fine-focus sealed tube 1234 reflections with I > 2σ(I)
graphite Rint = 0.016
ω scan θmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −4→4
Tmin = 0.963, Tmax = 0.973 k = −27→26
4345 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.2069P] where P = (Fo2 + 2Fc2)/3
1352 reflections (Δ/σ)max = 0.001
150 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6088 (3) 0.49395 (4) 0.75022 (12) 0.0388 (3)
O2 0.4790 (3) 0.57014 (4) 0.97692 (11) 0.0328 (3)
H2A 0.375 (6) 0.5994 (11) 1.029 (3) 0.069 (7)*
O3 0.5451 (3) 0.68880 (5) 0.93130 (11) 0.0334 (3)
H3A 0.602 (6) 0.7255 (10) 0.907 (2) 0.061 (6)*
O4 0.7876 (3) 0.70585 (5) 0.36218 (12) 0.0402 (3)
N1 1.0268 (3) 0.62028 (5) 0.30646 (13) 0.0270 (3)
H1B 1.100 (5) 0.5854 (9) 0.329 (2) 0.037 (5)*
N2 1.1408 (4) 0.64212 (6) 0.16535 (13) 0.0283 (3)
H2C 1.285 (5) 0.6739 (9) 0.188 (2) 0.041 (5)*
H2B 0.950 (6) 0.6553 (8) 0.112 (2) 0.044 (5)*
C1 0.7698 (4) 0.63145 (6) 0.55422 (14) 0.0224 (3)
C2 0.7029 (4) 0.67156 (6) 0.66914 (15) 0.0250 (3)
H2 0.718 (4) 0.7128 (8) 0.6488 (18) 0.031 (4)*
C3 0.6093 (4) 0.65203 (6) 0.81195 (14) 0.0235 (3)
C4 0.5743 (4) 0.59242 (6) 0.84021 (14) 0.0231 (3)
C5 0.6437 (4) 0.55257 (6) 0.72421 (15) 0.0244 (3)
C6 0.7421 (4) 0.57157 (6) 0.58183 (15) 0.0246 (3)
H6 0.780 (4) 0.5428 (7) 0.5049 (19) 0.030 (4)*
C7 0.8618 (4) 0.65546 (6) 0.40269 (14) 0.0239 (3)
H1A 0.548 (6) 0.4893 (9) 0.842 (3) 0.057 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0733 (9) 0.0179 (5) 0.0271 (6) 0.0005 (5) 0.0199 (5) 0.0016 (4)
O2 0.0557 (7) 0.0214 (5) 0.0230 (5) 0.0030 (5) 0.0173 (5) 0.0034 (4)
O3 0.0602 (8) 0.0190 (5) 0.0227 (5) −0.0028 (5) 0.0169 (5) −0.0024 (4)
O4 0.0707 (9) 0.0224 (5) 0.0295 (6) 0.0123 (5) 0.0199 (5) 0.0066 (4)
N1 0.0409 (8) 0.0210 (6) 0.0202 (6) 0.0058 (5) 0.0118 (5) 0.0038 (4)
N2 0.0388 (8) 0.0276 (7) 0.0194 (6) 0.0021 (6) 0.0105 (5) 0.0028 (5)
C1 0.0257 (7) 0.0229 (7) 0.0190 (6) 0.0014 (5) 0.0045 (5) 0.0011 (5)
C2 0.0332 (8) 0.0188 (7) 0.0235 (7) −0.0002 (6) 0.0063 (5) 0.0012 (5)
C3 0.0291 (8) 0.0211 (7) 0.0209 (6) 0.0002 (5) 0.0061 (5) −0.0016 (5)
C4 0.0280 (8) 0.0225 (7) 0.0194 (6) 0.0006 (5) 0.0062 (5) 0.0023 (5)
C5 0.0317 (8) 0.0177 (7) 0.0241 (7) 0.0009 (5) 0.0055 (5) 0.0014 (5)
C6 0.0322 (8) 0.0218 (7) 0.0205 (7) 0.0027 (6) 0.0064 (5) −0.0023 (5)
C7 0.0302 (8) 0.0211 (7) 0.0207 (6) 0.0001 (5) 0.0047 (5) 0.0000 (5)

Geometric parameters (Å, °)

O1—C5 1.3654 (16) N2—H2B 0.88 (2)
O1—H1A 0.85 (2) C1—C2 1.3897 (18)
O2—C4 1.3603 (16) C1—C6 1.3934 (19)
O2—H2A 0.91 (3) C1—C7 1.4869 (17)
O3—C3 1.3678 (16) C2—C3 1.3844 (18)
O3—H3A 0.89 (2) C2—H2 0.961 (18)
O4—C7 1.2306 (17) C3—C4 1.3912 (19)
N1—C7 1.3363 (18) C4—C5 1.3946 (19)
N1—N2 1.4139 (15) C5—C6 1.3828 (19)
N1—H1B 0.860 (19) C6—H6 0.955 (17)
N2—H2C 0.92 (2)
C5—O1—H1A 108.1 (14) O3—C3—C2 123.28 (12)
C4—O2—H2A 107.7 (15) O3—C3—C4 116.38 (11)
C3—O3—H3A 110.1 (14) C2—C3—C4 120.35 (12)
C7—N1—N2 120.34 (12) O2—C4—C3 123.55 (12)
C7—N1—H1B 124.6 (12) O2—C4—C5 117.28 (12)
N2—N1—H1B 114.4 (12) C3—C4—C5 119.17 (12)
N1—N2—H2C 107.3 (11) O1—C5—C6 119.29 (12)
N1—N2—H2B 107.8 (12) O1—C5—C4 119.76 (12)
H2C—N2—H2B 106.7 (17) C6—C5—C4 120.95 (12)
C2—C1—C6 120.31 (12) C5—C6—C1 119.26 (12)
C2—C1—C7 117.11 (12) C5—C6—H6 118.0 (10)
C6—C1—C7 122.56 (12) C1—C6—H6 122.7 (10)
C3—C2—C1 119.94 (13) O4—C7—N1 119.12 (12)
C3—C2—H2 120.1 (9) O4—C7—C1 122.66 (12)
C1—C2—H2 119.9 (9) N1—C7—C1 118.21 (12)
C6—C1—C2—C3 0.2 (2) C3—C4—C5—C6 −0.8 (2)
C7—C1—C2—C3 178.80 (13) O1—C5—C6—C1 178.56 (13)
C1—C2—C3—O3 178.95 (13) C4—C5—C6—C1 −0.4 (2)
C1—C2—C3—C4 −1.4 (2) C2—C1—C6—C5 0.7 (2)
O3—C3—C4—O2 0.5 (2) C7—C1—C6—C5 −177.85 (13)
C2—C3—C4—O2 −179.16 (13) N2—N1—C7—O4 5.1 (2)
O3—C3—C4—C5 −178.65 (13) N2—N1—C7—C1 −175.85 (13)
C2—C3—C4—C5 1.7 (2) C2—C1—C7—O4 −20.3 (2)
O2—C4—C5—O1 1.0 (2) C6—C1—C7—O4 158.29 (15)
C3—C4—C5—O1 −179.71 (13) C2—C1—C7—N1 160.76 (13)
O2—C4—C5—C6 179.99 (13) C6—C1—C7—N1 −20.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2i 0.85 (3) 2.09 (2) 2.8254 (14) 145.0 (19)
N1—H1B···O1ii 0.86 (2) 2.24 (2) 2.9960 (15) 146.2 (16)
O2—H2A···N2iii 0.91 (3) 1.80 (2) 2.6877 (17) 165 (2)
N2—H2B···O3iv 0.88 (2) 2.25 (2) 3.1158 (17) 167.0 (18)
N2—H2C···O4v 0.92 (2) 2.454 (18) 3.2255 (18) 141.8 (15)
O3—H3A···O4vi 0.89 (2) 1.77 (2) 2.6522 (15) 171 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z+1; (iv) x, y, z−1; (v) x+1, y, z; (vi) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6363).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Jamal, R. A., Ashiq, U., Arshad, M. N., Maqsood, Z. T. & Khan, I. U. (2009). Acta Cryst. E65, o1764. [DOI] [PMC free article] [PubMed]
  3. Maqsood, Z. T., Khan, K. M., Ashiq, U., Ara, R., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enzyme Inhib. Med. Chem. 21, 37–42. [DOI] [PubMed]
  4. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  5. Saeed, A., Mumtaz, A., Rafique, H., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o2336. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Zareef, M., Iqbal, R., Qadeer, G., Arfan, M. & Lu, X.-M. (2006). Acta Cryst. E62, o3259–o3261.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034374/hb6363sup1.cif

e-67-o2462-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034374/hb6363Isup2.hkl

e-67-o2462-Isup2.hkl (66.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034374/hb6363Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES