Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2316. doi: 10.1107/S1600536811032004

Ethyl 5-((1E)-1-{(E)-2-[1-(4-eth­oxy­carbonyl-3-methyl-1,2-oxazol-5-yl)ethyl­idene]hydrazin-1-yl­idene}eth­yl)-3-methyl-1,2-oxazole-4-carboxyl­ate

Abdullah M Asiri a,b,, Abdulrahman O Al-Youbi a, Hassan M Faidallah a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3200773  PMID: 22058944

Abstract

The complete mol­ecule of the title compound, C18H22N4O6, is generated by the application of a twofold axis of symmetry. Twists are evident in the mol­ecule, i.e. between each —C=N—N group and the adjacent oxazole ring [dihedral angle = 46.08 (12) °] and between the latter and attached ester group [excluding the terminal methyl group; dihedral angle = 24.4 (7) °]. In the crystal, C—H⋯O and π–π [3.5990 (11) Å] contacts connect mol­ecules into supra­molecular arrays in the ac plane. These stack along the b axis, being connected by weak π–π [3.3903 (11) Å] inter­actions.

Related literature

For background to the biological activity of hydrazone compounds, see: Faid-Allah et al. (2011).graphic file with name e-67-o2316-scheme1.jpg

Experimental

Crystal data

  • C18H22N4O6

  • M r = 390.40

  • Monoclinic, Inline graphic

  • a = 9.4509 (5) Å

  • b = 8.5456 (4) Å

  • c = 11.9859 (5) Å

  • β = 104.107 (5)°

  • V = 938.83 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

Data collection

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.889, T max = 1.000

  • 4223 measured reflections

  • 2095 independent reflections

  • 1639 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.159

  • S = 0.87

  • 2095 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032004/hg5078sup1.cif

e-67-o2316-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032004/hg5078Isup2.hkl

e-67-o2316-Isup2.hkl (100.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032004/hg5078Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9c⋯O2i 0.98 2.46 3.356 (3) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The study of the title compound (I) was motivated by the recent report of the significant anti-bacterial and anti-fungal activity exhibited hydrazone compounds (Faid-Allah et al., 2011).

The full molecule of (I) is generated by the application of a 2-fold axis of symmetry. The configuration about the imine bond [1.280 (3) Å] is E. There are significant twists throughout the molecule. Firstly, the oxazole ring [r.m.s. deviation = 0.007 Å] is twisted away from the plane of the central —C═N—N═C— group as seen in the value of the O1—C7—C8—N2 torsion angle of -43.3 (2)°. Further, the ester group lies out of the plane through the oxazole ring with the O2—C3—C6—C7 torsion angle being 160.5 (2) °. The oxazole-O atoms as well as the ester-ethyl groups are orientated towards the 2-fold axis while the carbonyl-O atoms are directed away from the axis. The terminal methyl group of the ester lies out of the plane of the remaining non-H atoms [the C3—O3—C2—C1 torsion angle = 159.33 (19) °].

Both C—H···O, Table 1, and π···π interactions feature in the crystal packing. The C—H···O and π···π contacts between oxazole rings [3.5990 (11) Å for symmetry operation 3/2 - x, y, 1.5 - z] combine to link molecules into supramolecular arrays in the ac plane, Fig. 2. These partially interdigitate with centrosymmetrically related layers along the b axis allowing for the formation of additional π···π interactions [3.3903 (11) Å for symmetry operation 1 - x, 1 - y, 1 - z], Fig. 3.

Experimental

Ethyl 5-acetyl-2-methylthiazole-4-carboxylate (10 mmol) in C2H5OH (25 ml) was refluxed with hydrazine hydrate (12 mmol) for 1 h. The hydrazone which separated after concentration of the reaction mixture was filtered off, washed with C2H5OH, and recrystallized from C2H5OH; M.pt. 448 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.98 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecule has crystallographic 2-fold symmetry and unlabelled atoms are generated by the symmetry operation 0.5 - x, y, 1.5 - z.

Fig. 2.

Fig. 2.

Supramolecular array in the ac plane in (I) mediated by C—H···O and π···π interactions shown as orange and purple dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents of (I). The C—H···O and π···π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C18H22N4O6 F(000) = 412
Mr = 390.40 Dx = 1.381 Mg m3
Monoclinic, P2/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yac Cell parameters from 1742 reflections
a = 9.4509 (5) Å θ = 2.4–29.3°
b = 8.5456 (4) Å µ = 0.11 mm1
c = 11.9859 (5) Å T = 100 K
β = 104.107 (5)° Plate, colourless
V = 938.83 (8) Å3 0.25 × 0.25 × 0.05 mm
Z = 2

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 2095 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1639 reflections with I > 2σ(I)
mirror Rint = 0.023
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.4°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −11→10
Tmin = 0.889, Tmax = 1.000 l = −14→15
4223 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0921P)2 + 1.4075P] where P = (Fo2 + 2Fc2)/3
2095 reflections (Δ/σ)max < 0.001
129 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.54005 (15) 0.52943 (17) 0.63908 (12) 0.0176 (3)
O2 0.67094 (17) 0.02949 (18) 0.57529 (14) 0.0248 (4)
O3 0.51960 (17) 0.05289 (17) 0.69403 (12) 0.0202 (4)
N1 0.67630 (19) 0.5276 (2) 0.60982 (14) 0.0186 (4)
N2 0.32058 (18) 0.45172 (19) 0.74369 (14) 0.0162 (4)
C1 0.4715 (3) −0.1526 (3) 0.8137 (2) 0.0309 (6)
H1A 0.4662 −0.2662 0.8231 0.046*
H1B 0.3756 −0.1062 0.8101 0.046*
H1C 0.5434 −0.1085 0.8792 0.046*
C2 0.5158 (3) −0.1174 (3) 0.7054 (2) 0.0271 (5)
H2A 0.6133 −0.1623 0.7086 0.033*
H2B 0.4450 −0.1632 0.6387 0.033*
C3 0.5997 (2) 0.1086 (3) 0.62488 (16) 0.0172 (4)
C4 0.8420 (2) 0.3360 (3) 0.56290 (18) 0.0226 (5)
H4A 0.8956 0.4309 0.5526 0.034*
H4B 0.8161 0.2777 0.4904 0.034*
H4C 0.9033 0.2705 0.6227 0.034*
C5 0.7064 (2) 0.3801 (2) 0.59804 (16) 0.0161 (4)
C6 0.5953 (2) 0.2805 (2) 0.62067 (15) 0.0150 (4)
C7 0.4951 (2) 0.3805 (2) 0.64479 (16) 0.0148 (4)
C8 0.3485 (2) 0.3616 (2) 0.66646 (16) 0.0153 (4)
C9 0.2435 (2) 0.2483 (3) 0.59511 (18) 0.0201 (5)
H9A 0.1556 0.3042 0.5542 0.030*
H9B 0.2170 0.1685 0.6451 0.030*
H9C 0.2892 0.1980 0.5393 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0160 (7) 0.0156 (8) 0.0229 (7) −0.0016 (5) 0.0082 (6) 0.0009 (6)
O2 0.0251 (9) 0.0214 (8) 0.0312 (8) 0.0041 (6) 0.0134 (7) −0.0046 (6)
O3 0.0276 (8) 0.0123 (7) 0.0238 (8) 0.0014 (6) 0.0124 (6) 0.0017 (6)
N1 0.0141 (8) 0.0240 (10) 0.0194 (8) −0.0022 (7) 0.0074 (7) 0.0010 (7)
N2 0.0142 (9) 0.0152 (9) 0.0200 (8) 0.0015 (6) 0.0059 (7) 0.0020 (7)
C1 0.0438 (15) 0.0198 (12) 0.0295 (12) −0.0039 (10) 0.0099 (11) 0.0041 (9)
C2 0.0397 (14) 0.0120 (11) 0.0323 (12) 0.0001 (9) 0.0138 (10) 0.0017 (9)
C3 0.0146 (10) 0.0192 (11) 0.0168 (9) 0.0006 (8) 0.0017 (8) −0.0006 (8)
C4 0.0159 (10) 0.0304 (12) 0.0235 (10) 0.0016 (9) 0.0086 (8) 0.0012 (9)
C5 0.0153 (9) 0.0201 (10) 0.0126 (9) 0.0000 (8) 0.0026 (7) 0.0014 (7)
C6 0.0133 (9) 0.0182 (10) 0.0138 (9) 0.0004 (7) 0.0037 (7) 0.0010 (7)
C7 0.0162 (10) 0.0143 (10) 0.0138 (9) −0.0010 (8) 0.0034 (7) 0.0014 (7)
C8 0.0155 (10) 0.0129 (9) 0.0181 (9) −0.0004 (7) 0.0049 (7) 0.0030 (7)
C9 0.0166 (10) 0.0226 (11) 0.0220 (10) −0.0030 (8) 0.0065 (8) −0.0034 (8)

Geometric parameters (Å, °)

O1—C7 1.349 (2) C2—H2B 0.9900
O1—N1 1.415 (2) C3—C6 1.470 (3)
O2—C3 1.207 (2) C4—C5 1.492 (3)
O3—C3 1.339 (2) C4—H4A 0.9800
O3—C2 1.462 (3) C4—H4B 0.9800
N1—C5 1.307 (3) C4—H4C 0.9800
N2—C8 1.280 (3) C5—C6 1.428 (3)
N2—N2i 1.379 (3) C6—C7 1.358 (3)
C1—C2 1.489 (3) C7—C8 1.479 (3)
C1—H1A 0.9800 C8—C9 1.496 (3)
C1—H1B 0.9800 C9—H9A 0.9800
C1—H1C 0.9800 C9—H9B 0.9800
C2—H2A 0.9900 C9—H9C 0.9800
C7—O1—N1 108.63 (14) C5—C4—H4C 109.5
C3—O3—C2 116.20 (16) H4A—C4—H4C 109.5
C5—N1—O1 105.79 (16) H4B—C4—H4C 109.5
C8—N2—N2i 117.04 (17) N1—C5—C6 111.43 (18)
C2—C1—H1A 109.5 N1—C5—C4 119.89 (19)
C2—C1—H1B 109.5 C6—C5—C4 128.67 (19)
H1A—C1—H1B 109.5 C7—C6—C5 104.37 (18)
C2—C1—H1C 109.5 C7—C6—C3 129.58 (18)
H1A—C1—H1C 109.5 C5—C6—C3 125.88 (18)
H1B—C1—H1C 109.5 O1—C7—C6 109.77 (17)
O3—C2—C1 107.50 (18) O1—C7—C8 115.58 (17)
O3—C2—H2A 110.2 C6—C7—C8 134.47 (19)
C1—C2—H2A 110.2 N2—C8—C7 115.36 (17)
O3—C2—H2B 110.2 N2—C8—C9 125.31 (18)
C1—C2—H2B 110.2 C7—C8—C9 119.26 (17)
H2A—C2—H2B 108.5 C8—C9—H9A 109.5
O2—C3—O3 125.0 (2) C8—C9—H9B 109.5
O2—C3—C6 123.86 (19) H9A—C9—H9B 109.5
O3—C3—C6 111.13 (17) C8—C9—H9C 109.5
C5—C4—H4A 109.5 H9A—C9—H9C 109.5
C5—C4—H4B 109.5 H9B—C9—H9C 109.5
H4A—C4—H4B 109.5
C7—O1—N1—C5 0.7 (2) O3—C3—C6—C5 152.60 (18)
C3—O3—C2—C1 159.33 (19) N1—O1—C7—C6 0.0 (2)
C2—O3—C3—O2 −2.3 (3) N1—O1—C7—C8 −175.79 (15)
C2—O3—C3—C6 −179.88 (17) C5—C6—C7—O1 −0.6 (2)
O1—N1—C5—C6 −1.1 (2) C3—C6—C7—O1 174.79 (18)
O1—N1—C5—C4 177.90 (16) C5—C6—C7—C8 174.0 (2)
N1—C5—C6—C7 1.1 (2) C3—C6—C7—C8 −10.5 (4)
C4—C5—C6—C7 −177.79 (19) N2i—N2—C8—C7 172.11 (15)
N1—C5—C6—C3 −174.53 (18) N2i—N2—C8—C9 −4.7 (3)
C4—C5—C6—C3 6.6 (3) O1—C7—C8—N2 −43.3 (2)
O2—C3—C6—C7 160.5 (2) C6—C7—C8—N2 142.2 (2)
O3—C3—C6—C7 −21.9 (3) O1—C7—C8—C9 133.71 (19)
O2—C3—C6—C5 −25.0 (3) C6—C7—C8—C9 −40.7 (3)

Symmetry codes: (i) −x+1/2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9c···O2ii 0.98 2.46 3.356 (3) 152

Symmetry codes: (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5078).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Faid-Allah, H. M., Khan, K. A. & Makki, M. S. I. (2011). J. Chin. Chem. Soc. 58, 191–198.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032004/hg5078sup1.cif

e-67-o2316-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032004/hg5078Isup2.hkl

e-67-o2316-Isup2.hkl (100.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032004/hg5078Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES