Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 2;67(Pt 9):o2228. doi: 10.1107/S1600536811030625

7-Benzyl-3-(4-fluoro­phen­yl)-2-(pyrrol­idin-1-yl)-5,6,7,8-tetra­hydro­pyrido[4′,3′:4,5]thieno[2,3-d]pyrimidin-4(3H)-one

Hong Chen a,*, Hai-Jun Hu b, Kai Yan b, Qiu-Hong Dai b
PMCID: PMC3200784  PMID: 22065028

Abstract

In the title compound, C26H25FN4OS, the thienopyrimidine fused-ring system is close to planar (r.m.s. deviation = 0.066 Å), with a maximum deviation of 0.1243 (17) Å for the N atom adjacent to the carbonyl group. This ring system forms dihedral angles of 67.5 (1) and 88.9 (1) ° with the adjacent six-membered rings. Inter­molecular C—H⋯O hydrogen bonding and C—H⋯π inter­actions help to stabilize the crystal structure.

Related literature

For the biological and pharmaceutical properties of compounds containing the fused thienopyrimidine system, see: Amr et al. (2010); Huang et al. (2009); Jennings et al. (2005); Kikuchi et al. (2006); Mavrova et al. (2010); Santagati et al. (2002). For related structures, see: Hu et al. (2007); Xie et al. (2008).graphic file with name e-67-o2228-scheme1.jpg

Experimental

Crystal data

  • C26H25FN4OS

  • M r = 460.56

  • Triclinic, Inline graphic

  • a = 8.132 (10) Å

  • b = 9.736 (11) Å

  • c = 15.540 (18) Å

  • α = 99.742 (16)°

  • β = 99.636 (11)°

  • γ = 105.551 (14)°

  • V = 1139 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.960, T max = 0.974

  • 12210 measured reflections

  • 5233 independent reflections

  • 4018 reflections with I > 2σ(I)

  • R int = 0.154

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.180

  • S = 1.05

  • 5233 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030625/zq2114sup1.cif

e-67-o2228-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030625/zq2114Isup2.hkl

e-67-o2228-Isup2.hkl (256.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030625/zq2114Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the S1-C11-C10-C13-C16 and N2-C15-N3-C14-C13-C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.50 3.461 (5) 171
C24—H24B⋯O1ii 0.97 2.44 3.316 (5) 151
C25—H25BCg1iii 0.97 2.86 3.693 (5) 144
C26—H26BCg2iii 0.97 2.80 3.717 (5) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported financially by the Science Foundation of Hubei Province Education Department, China (project No. D20091301) and the Excellent Fund for Scientific Research and Special Projects in China Three Gorges University, China (project No. KJ2009B004).

supplementary crystallographic information

Comment

Derivatives of heterocycles containing the thienopyrimidine system have proved to show significant antifungal, antibacterical, anticonvulsant and angiotensin antagonistic activities (Amr et al. 2010; Huang et al. 2009; Jennings et al. 2005; Kikuchi et al. 2006; Mavrova et al. 2010; Santagati et al. 2002). Recently, we have focused on the synthesis of fused heterocyclic systems containing thienopyrimidine via aza-Wittig reaction under mild conditions. Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Hu et al., 2007; Xie et al., 2008). The title compound has potential use as a precursor for obtaining bioactive molecules with fluorescence properties. Herein, we report its crystal structure (Fig. 1 and 2).

In the crystal structure of the title compound, C26H25FN4OS, the thienopyrimidine fused ring system are essentially coplanar (rms deviation = 0.066 Å) with a maximum deviation of 0.1243 (17) Å for atom N3. This ring system forms dihedral angles of 67.5 (1) and 88.9 (1) ° with the adjacent 6-membered rings C17–C22 and C1-C6, respectively. Intermolecular C—H···O hydrogen bondings (C8—H8B···O1i and C24—H24B···O1ii with symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z) and C—H···π interactions (C25—H25B···Cg1iii and C26—H26···Cg2iii with Cg1 and Cg2 centroids of the S1-C11-C10-C13-C16 and N2-C15-N3-C14-C13-C16 rings and symmetry code: (iii) 1-x, 1-y, 1-z) help to stabilize the crystal structure of the title compound (Table 1).

Experimental

Fluoro-4-isocyanatobenzene (2 mmol) under nitrogen atmosphere was added to a solution of iminophosphorane (2 mmol) in anhydrous CH2Cl2 (10 ml) at room temperature (Fig. 3). When the reaction mixture was left unstirred for 12 h at 273–278k, iminophosphorane was consumed (TLC monitored). The solvent was removed under reduced pressure and ether/petroleum ether (volume ratio 1:2, 20 ml) was added to precipitate triphenylphosphine oxide. Removal of the solvent gave carbodiimide, which was used directly without further purification. Pyrrolidine (2 mmol) was added to the solution of carbodiimide in anhydrous dichloromethane (10 ml). After the reaction mixture was left unstirred for 5–6 h, the solvent was removed and anhydrous EtOH (10 ml) with several drops of EtONa (in EtOH) was added to the mixture. The mixture was stirred for another 6–8 h at room temperature. The solution was condensed and the residual was recrystallized from EtOH to give the expected title compound as white crystals.

Refinement

All H atoms were positioned geometrically [C—H = 0.93, 0.97 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with 50% probability displacement ellipsoids. H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

Packing diagram of the title compound projected along the a axis direction. H atoms are omitted for clarity.

Fig. 3.

Fig. 3.

Reaction scheme.

Crystal data

C26H25FN4OS Z = 2
Mr = 460.56 F(000) = 484
Triclinic, P1 Dx = 1.343 Mg m3
Hall symbol: -P 1 Melting point: 485 K
a = 8.132 (10) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.736 (11) Å Cell parameters from 2106 reflections
c = 15.540 (18) Å θ = 2.7–27.5°
α = 99.742 (16)° µ = 0.18 mm1
β = 99.636 (11)° T = 296 K
γ = 105.551 (14)° Block, colourless
V = 1139 (2) Å3 0.23 × 0.20 × 0.15 mm

Data collection

Bruker SMART CCD diffractometer 5233 independent reflections
Radiation source: fine-focus sealed tube 4018 reflections with I > 2σ(I)
graphite Rint = 0.154
CCD Profile fitting scans θmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.960, Tmax = 0.974 k = −12→12
12210 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0691P)2] where P = (Fo2 + 2Fc2)/3
5233 reflections (Δ/σ)max < 0.001
298 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.44564 (6) 0.17251 (6) 0.31146 (3) 0.04008 (18)
N2 0.3853 (2) 0.28656 (17) 0.47059 (11) 0.0354 (4)
O1 0.7783 (2) 0.16116 (16) 0.60615 (10) 0.0477 (4)
N3 0.57983 (19) 0.29116 (16) 0.60532 (10) 0.0318 (3)
N4 0.3472 (2) 0.39607 (17) 0.60525 (11) 0.0349 (4)
C13 0.6094 (2) 0.16139 (18) 0.46627 (13) 0.0322 (4)
C15 0.4366 (2) 0.32359 (19) 0.55846 (13) 0.0315 (4)
C17 0.6746 (2) 0.3752 (2) 0.69460 (12) 0.0335 (4)
C14 0.6647 (2) 0.19681 (19) 0.56157 (13) 0.0328 (4)
C16 0.4790 (2) 0.21316 (19) 0.42757 (13) 0.0332 (4)
N1 0.7929 (2) −0.04640 (17) 0.25491 (12) 0.0401 (4)
C10 0.6883 (2) 0.09292 (18) 0.40137 (13) 0.0329 (4)
C23 0.3336 (3) 0.4011 (2) 0.69915 (14) 0.0403 (4)
H23A 0.4258 0.4826 0.7396 0.048*
H23B 0.3403 0.3110 0.7161 0.048*
C11 0.6146 (3) 0.0929 (2) 0.31656 (13) 0.0351 (4)
C22 0.7449 (3) 0.5255 (2) 0.70756 (14) 0.0393 (4)
H22 0.7291 0.5706 0.6600 0.047*
C26 0.2043 (2) 0.4368 (2) 0.55417 (15) 0.0402 (5)
H26A 0.1182 0.3514 0.5136 0.048*
H26B 0.2495 0.5072 0.5200 0.048*
C9 0.8400 (3) 0.0331 (2) 0.41996 (14) 0.0381 (4)
H9A 0.7991 −0.0636 0.4318 0.046*
H9B 0.9257 0.0961 0.4726 0.046*
C12 0.6811 (3) 0.0451 (2) 0.23597 (14) 0.0399 (5)
H12A 0.5828 −0.0095 0.1865 0.048*
H12B 0.7473 0.1305 0.2184 0.048*
C18 0.7011 (3) 0.3054 (2) 0.76407 (14) 0.0452 (5)
H18 0.6543 0.2044 0.7545 0.054*
C8 0.9246 (3) 0.0243 (2) 0.33961 (15) 0.0435 (5)
H8A 0.9891 0.1222 0.3367 0.052*
H8B 1.0071 −0.0308 0.3473 0.052*
F1 0.9572 (3) 0.6188 (2) 0.94182 (12) 0.1047 (7)
C4 0.7603 (3) −0.1314 (3) 0.09123 (16) 0.0513 (6)
C21 0.8389 (3) 0.6084 (3) 0.79164 (17) 0.0530 (6)
H21 0.8838 0.7097 0.8019 0.064*
C19 0.7981 (3) 0.3875 (3) 0.84799 (16) 0.0596 (6)
H19 0.8183 0.3429 0.8954 0.072*
C24 0.1546 (3) 0.4208 (3) 0.70031 (16) 0.0516 (6)
H24A 0.1543 0.4772 0.7580 0.062*
H24B 0.0648 0.3269 0.6874 0.062*
C25 0.1256 (3) 0.5036 (2) 0.62624 (17) 0.0504 (5)
H25A 0.0018 0.4885 0.6040 0.061*
H25B 0.1850 0.6077 0.6478 0.061*
C7 0.8822 (3) −0.0742 (3) 0.18182 (17) 0.0520 (6)
H7A 0.9434 −0.1444 0.1933 0.062*
H7B 0.9690 0.0161 0.1816 0.062*
C20 0.8637 (3) 0.5372 (3) 0.85920 (16) 0.0621 (7)
C3 0.6252 (4) −0.2613 (3) 0.0722 (2) 0.0719 (8)
H3 0.6104 −0.3154 0.1158 0.086*
C5 0.7773 (4) −0.0546 (3) 0.0246 (2) 0.0709 (8)
H5 0.8661 0.0339 0.0366 0.085*
C6 0.6658 (5) −0.1054 (4) −0.0599 (2) 0.0875 (10)
H6 0.6812 −0.0521 −0.1039 0.105*
C2 0.5115 (5) −0.3116 (4) −0.0117 (2) 0.0837 (9)
H2 0.4197 −0.3982 −0.0237 0.100*
C1 0.5346 (6) −0.2330 (4) −0.0777 (2) 0.0861 (10)
H1 0.4599 −0.2680 −0.1342 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0408 (3) 0.0565 (3) 0.0278 (3) 0.0268 (2) 0.0029 (2) 0.0076 (2)
N2 0.0305 (8) 0.0460 (9) 0.0319 (8) 0.0176 (7) 0.0042 (6) 0.0075 (7)
O1 0.0476 (9) 0.0631 (9) 0.0363 (8) 0.0338 (7) −0.0036 (6) 0.0069 (7)
N3 0.0275 (7) 0.0394 (8) 0.0274 (8) 0.0124 (6) 0.0015 (6) 0.0056 (7)
N4 0.0297 (8) 0.0465 (8) 0.0312 (8) 0.0171 (7) 0.0059 (6) 0.0080 (7)
C13 0.0308 (9) 0.0346 (9) 0.0324 (10) 0.0131 (7) 0.0039 (7) 0.0082 (8)
C15 0.0261 (8) 0.0378 (9) 0.0307 (9) 0.0104 (7) 0.0040 (7) 0.0092 (8)
C17 0.0274 (8) 0.0467 (10) 0.0265 (9) 0.0141 (8) 0.0035 (7) 0.0062 (8)
C14 0.0301 (9) 0.0346 (9) 0.0326 (10) 0.0120 (7) 0.0015 (7) 0.0065 (8)
C16 0.0301 (9) 0.0403 (9) 0.0284 (9) 0.0140 (7) 0.0015 (7) 0.0058 (8)
N1 0.0432 (9) 0.0462 (9) 0.0363 (9) 0.0233 (8) 0.0103 (7) 0.0063 (8)
C10 0.0313 (9) 0.0341 (8) 0.0330 (10) 0.0128 (7) 0.0027 (7) 0.0065 (8)
C23 0.0353 (10) 0.0537 (11) 0.0334 (10) 0.0143 (9) 0.0110 (8) 0.0093 (9)
C11 0.0377 (10) 0.0399 (9) 0.0307 (10) 0.0183 (8) 0.0056 (8) 0.0076 (8)
C22 0.0326 (9) 0.0475 (10) 0.0375 (11) 0.0147 (8) 0.0062 (8) 0.0064 (9)
C26 0.0283 (9) 0.0514 (11) 0.0429 (12) 0.0166 (8) 0.0051 (8) 0.0119 (9)
C9 0.0352 (10) 0.0406 (9) 0.0371 (10) 0.0169 (8) 0.0003 (8) 0.0041 (8)
C12 0.0457 (11) 0.0466 (10) 0.0332 (10) 0.0233 (9) 0.0094 (9) 0.0090 (9)
C18 0.0461 (12) 0.0581 (12) 0.0318 (11) 0.0178 (10) 0.0051 (9) 0.0117 (10)
C8 0.0380 (11) 0.0500 (11) 0.0460 (12) 0.0208 (9) 0.0074 (9) 0.0097 (10)
F1 0.1166 (17) 0.1151 (14) 0.0450 (10) 0.0321 (12) −0.0342 (10) −0.0244 (10)
C4 0.0655 (15) 0.0610 (13) 0.0401 (12) 0.0356 (12) 0.0211 (11) 0.0099 (11)
C21 0.0433 (12) 0.0515 (12) 0.0502 (14) 0.0117 (10) −0.0017 (10) −0.0087 (11)
C19 0.0610 (15) 0.0860 (18) 0.0301 (11) 0.0277 (13) −0.0020 (10) 0.0119 (12)
C24 0.0349 (11) 0.0754 (15) 0.0473 (13) 0.0192 (10) 0.0149 (9) 0.0119 (12)
C25 0.0361 (11) 0.0599 (13) 0.0606 (15) 0.0225 (10) 0.0135 (10) 0.0123 (12)
C7 0.0541 (13) 0.0638 (13) 0.0486 (14) 0.0317 (11) 0.0187 (11) 0.0111 (11)
C20 0.0575 (15) 0.0801 (17) 0.0335 (12) 0.0234 (13) −0.0117 (10) −0.0104 (12)
C3 0.102 (2) 0.0659 (16) 0.0445 (15) 0.0245 (16) 0.0109 (14) 0.0097 (13)
C5 0.0764 (19) 0.0890 (19) 0.0595 (18) 0.0321 (16) 0.0261 (15) 0.0278 (16)
C6 0.111 (3) 0.109 (3) 0.056 (2) 0.043 (2) 0.0215 (19) 0.037 (2)
C2 0.108 (3) 0.0735 (18) 0.0561 (19) 0.0235 (17) 0.0034 (16) −0.0004 (16)
C1 0.121 (3) 0.100 (2) 0.0404 (15) 0.053 (2) 0.0078 (17) 0.0041 (16)

Geometric parameters (Å, °)

S1—C16 1.739 (3) C9—H9B 0.9700
S1—C11 1.747 (2) C12—H12A 0.9700
N2—C15 1.316 (3) C12—H12B 0.9700
N2—C16 1.357 (3) C18—C19 1.388 (3)
O1—C14 1.222 (2) C18—H18 0.9300
N3—C15 1.406 (2) C8—H8A 0.9700
N3—C14 1.438 (3) C8—H8B 0.9700
N3—C17 1.452 (3) F1—C20 1.364 (3)
N4—C15 1.354 (3) C4—C5 1.380 (4)
N4—C23 1.475 (3) C4—C3 1.383 (4)
N4—C26 1.478 (3) C4—C7 1.499 (4)
C13—C16 1.384 (3) C21—C20 1.369 (4)
C13—C14 1.427 (3) C21—H21 0.9300
C13—C10 1.446 (3) C19—C20 1.380 (4)
C17—C22 1.387 (3) C19—H19 0.9300
C17—C18 1.386 (3) C24—C25 1.535 (3)
N1—C12 1.463 (3) C24—H24A 0.9700
N1—C7 1.473 (3) C24—H24B 0.9700
N1—C8 1.476 (3) C25—H25A 0.9700
C10—C11 1.353 (3) C25—H25B 0.9700
C10—C9 1.506 (3) C7—H7A 0.9700
C23—C24 1.521 (3) C7—H7B 0.9700
C23—H23A 0.9700 C3—C2 1.391 (4)
C23—H23B 0.9700 C3—H3 0.9300
C11—C12 1.497 (3) C5—C6 1.390 (5)
C22—C21 1.386 (3) C5—H5 0.9300
C22—H22 0.9300 C6—C1 1.354 (5)
C26—C25 1.518 (3) C6—H6 0.9300
C26—H26A 0.9700 C2—C1 1.387 (5)
C26—H26B 0.9700 C2—H2 0.9300
C9—C8 1.524 (3) C1—H1 0.9300
C9—H9A 0.9700
C16—S1—C11 91.27 (9) C11—C12—H12B 109.5
C15—N2—C16 115.47 (16) H12A—C12—H12B 108.1
C15—N3—C14 121.92 (17) C19—C18—C17 119.4 (2)
C15—N3—C17 121.57 (16) C19—C18—H18 120.3
C14—N3—C17 115.13 (15) C17—C18—H18 120.3
C15—N4—C23 127.56 (16) N1—C8—C9 111.67 (19)
C15—N4—C26 117.88 (18) N1—C8—H8A 109.3
C23—N4—C26 111.67 (16) C9—C8—H8A 109.3
C16—C13—C14 118.39 (17) N1—C8—H8B 109.3
C16—C13—C10 112.99 (18) C9—C8—H8B 109.3
C14—C13—C10 128.06 (17) H8A—C8—H8B 107.9
N2—C15—N4 118.25 (17) C5—C4—C3 117.9 (3)
N2—C15—N3 122.75 (17) C5—C4—C7 120.9 (3)
N4—C15—N3 118.99 (18) C3—C4—C7 121.2 (2)
C22—C17—C18 120.97 (19) C20—C21—C22 118.2 (2)
C22—C17—N3 118.44 (17) C20—C21—H21 120.9
C18—C17—N3 120.52 (18) C22—C21—H21 120.9
O1—C14—C13 126.76 (18) C20—C19—C18 118.2 (2)
O1—C14—N3 119.67 (19) C20—C19—H19 120.9
C13—C14—N3 113.47 (15) C18—C19—H19 120.9
N2—C16—C13 127.03 (19) C23—C24—C25 103.86 (17)
N2—C16—S1 121.94 (14) C23—C24—H24A 111.0
C13—C16—S1 111.04 (14) C25—C24—H24A 111.0
C12—N1—C7 111.41 (18) C23—C24—H24B 111.0
C12—N1—C8 110.24 (16) C25—C24—H24B 111.0
C7—N1—C8 109.4 (2) H24A—C24—H24B 109.0
C11—C10—C13 111.91 (18) C26—C25—C24 103.37 (18)
C11—C10—C9 120.74 (18) C26—C25—H25A 111.1
C13—C10—C9 127.28 (18) C24—C25—H25A 111.1
N4—C23—C24 103.68 (16) C26—C25—H25B 111.1
N4—C23—H23A 111.0 C24—C25—H25B 111.1
C24—C23—H23A 111.0 H25A—C25—H25B 109.1
N4—C23—H23B 111.0 N1—C7—C4 113.4 (2)
C24—C23—H23B 111.0 N1—C7—H7A 108.9
H23A—C23—H23B 109.0 C4—C7—H7A 108.9
C10—C11—C12 124.32 (19) N1—C7—H7B 108.9
C10—C11—S1 112.73 (15) C4—C7—H7B 108.9
C12—C11—S1 122.64 (15) H7A—C7—H7B 107.7
C21—C22—C17 119.8 (2) F1—C20—C21 118.2 (3)
C21—C22—H22 120.1 F1—C20—C19 118.5 (3)
C17—C22—H22 120.1 C21—C20—C19 123.3 (2)
N4—C26—C25 103.64 (19) C4—C3—C2 120.4 (3)
N4—C26—H26A 111.0 C4—C3—H3 119.8
C25—C26—H26A 111.0 C2—C3—H3 119.8
N4—C26—H26B 111.0 C4—C5—C6 122.0 (3)
C25—C26—H26B 111.0 C4—C5—H5 119.0
H26A—C26—H26B 109.0 C6—C5—H5 119.0
C10—C9—C8 109.86 (18) C1—C6—C5 119.5 (3)
C10—C9—H9A 109.7 C1—C6—H6 120.3
C8—C9—H9A 109.7 C5—C6—H6 120.3
C10—C9—H9B 109.7 C1—C2—C3 120.2 (4)
C8—C9—H9B 109.7 C1—C2—H2 119.9
H9A—C9—H9B 108.2 C3—C2—H2 119.9
N1—C12—C11 110.81 (17) C6—C1—C2 120.1 (3)
N1—C12—H12A 109.5 C6—C1—H1 120.0
C11—C12—H12A 109.5 C2—C1—H1 120.0
N1—C12—H12B 109.5
C16—N2—C15—N4 −179.48 (15) C9—C10—C11—S1 −178.14 (13)
C16—N2—C15—N3 0.6 (3) C16—S1—C11—C10 1.92 (16)
C23—N4—C15—N2 155.38 (18) C16—S1—C11—C12 −172.02 (17)
C26—N4—C15—N2 −3.6 (2) C18—C17—C22—C21 −1.9 (3)
C23—N4—C15—N3 −24.7 (3) N3—C17—C22—C21 −178.84 (18)
C26—N4—C15—N3 176.30 (15) C15—N4—C26—C25 175.64 (16)
C14—N3—C15—N2 −9.2 (3) C23—N4—C26—C25 13.4 (2)
C17—N3—C15—N2 156.74 (18) C11—C10—C9—C8 18.0 (2)
C14—N3—C15—N4 170.88 (16) C13—C10—C9—C8 −158.70 (18)
C17—N3—C15—N4 −23.2 (2) C7—N1—C12—C11 −170.65 (17)
C15—N3—C17—C22 −55.7 (2) C8—N1—C12—C11 −49.0 (2)
C14—N3—C17—C22 111.1 (2) C10—C11—C12—N1 19.6 (3)
C15—N3—C17—C18 127.3 (2) S1—C11—C12—N1 −167.21 (13)
C14—N3—C17—C18 −65.8 (2) C22—C17—C18—C19 0.6 (3)
C16—C13—C14—O1 −179.38 (18) N3—C17—C18—C19 177.5 (2)
C10—C13—C14—O1 −8.6 (3) C12—N1—C8—C9 66.5 (2)
C16—C13—C14—N3 −3.1 (2) C7—N1—C8—C9 −170.69 (17)
C10—C13—C14—N3 167.70 (16) C10—C9—C8—N1 −48.3 (2)
C15—N3—C14—O1 −173.49 (17) C17—C22—C21—C20 2.0 (3)
C17—N3—C14—O1 19.7 (2) C17—C18—C19—C20 0.5 (4)
C15—N3—C14—C13 9.9 (2) N4—C23—C24—C25 −29.0 (2)
C17—N3—C14—C13 −156.85 (16) N4—C26—C25—C24 −31.0 (2)
C15—N2—C16—C13 6.9 (3) C23—C24—C25—C26 37.6 (2)
C15—N2—C16—S1 −173.02 (14) C12—N1—C7—C4 −51.8 (3)
C14—C13—C16—N2 −5.5 (3) C8—N1—C7—C4 −173.91 (18)
C10—C13—C16—N2 −177.61 (17) C5—C4—C7—N1 118.8 (3)
C14—C13—C16—S1 174.45 (14) C3—C4—C7—N1 −60.0 (3)
C10—C13—C16—S1 2.31 (19) C22—C21—C20—F1 179.6 (2)
C11—S1—C16—N2 177.55 (16) C22—C21—C20—C19 −0.8 (4)
C11—S1—C16—C13 −2.38 (14) C18—C19—C20—F1 179.2 (2)
C16—C13—C10—C11 −0.9 (2) C18—C19—C20—C21 −0.4 (4)
C14—C13—C10—C11 −172.11 (18) C5—C4—C3—C2 0.1 (4)
C16—C13—C10—C9 176.07 (17) C7—C4—C3—C2 178.9 (3)
C14—C13—C10—C9 4.9 (3) C3—C4—C5—C6 −1.2 (4)
C15—N4—C23—C24 −150.15 (19) C7—C4—C5—C6 180.0 (3)
C26—N4—C23—C24 9.9 (2) C4—C5—C6—C1 0.9 (5)
C13—C10—C11—C12 172.87 (17) C4—C3—C2—C1 1.2 (5)
C9—C10—C11—C12 −4.3 (3) C5—C6—C1—C2 0.4 (5)
C13—C10—C11—S1 −0.9 (2) C3—C2—C1—C6 −1.4 (5)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1-C11-C10-C13-C16 and N2-C15-N3-C14-C13-C16 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C8—H8B···O1i 0.97 2.50 3.461 (5) 171
C24—H24B···O1ii 0.97 2.44 3.316 (5) 151
C25—H25B···Cg1iii 0.97 2.86 3.693 (5) 144
C26—H26B···Cg2iii 0.97 2.80 3.717 (5) 158

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2114).

References

  1. Amr, A. E., Sherif, M. H., Assy, M. G., Al-Omar, M. A. & Ragab, I. (2010). Eur. J. Med. Chem. 45, 5935–5942. [DOI] [PubMed]
  2. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836–o1838.
  4. Huang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831–833. [DOI] [PubMed]
  5. Jennings, L. D., Kincaid, S. L., Wang, Y. D., Krishnamurthy, G., Beyer, C. F., McGinnis, J. P., Miranda, M., Discafanid, C. M. & Rabindran, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 4731–4735. [DOI] [PubMed]
  6. Kikuchi, H., Yamamoto, K., Horoiwa, S., Hirai, S., Kasahara, R., Hariguchi, N., Matsumoto, M. & Oshima, Y. (2006). J. Med. Chem. 49, 4698–4706. [DOI] [PubMed]
  7. Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856–5861. [DOI] [PubMed]
  8. Santagati, N. A., Prezzavento, O., Bousquet, E., Ronsisvalle, G. & Spampinato, S. (2002). J. Pharm. Pharmacol. 54, 717–728. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Xie, H., Meng, S.-M., Fan, Y.-Q. & Guo, Y. (2008). Acta Cryst. E64, o2434. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030625/zq2114sup1.cif

e-67-o2228-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030625/zq2114Isup2.hkl

e-67-o2228-Isup2.hkl (256.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030625/zq2114Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES