Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 2;67(Pt 9):m1182–m1183. doi: 10.1107/S1600536811030170

(2-{[2-(1H-Benzimidazol-2-yl-κN 3)phen­yl]imino­methyl-κN}-5-methyl­phenolato-κO)chloridozinc(II)

Naser Eltaher Eltayeb a,b, Siang Guan Teoh a, Suchada Chantrapromma c,, Hoong-Kun Fun d,*,§
PMCID: PMC3200787  PMID: 22065469

Abstract

In the title mononuclear complex, [Zn(C21H16N3O)Cl], the ZnII ion is coordinated in a distorted tetra­hedral geometry by two benzimidazole N atoms and one phenolate O atom from the tridentate Schiff base ligand and a chloride ligand. The benzimidazole ring system forms dihedral angles of 26.68 (9) and 56.16 (9)° with the adjacent benzene ring and the methyl­phenolate group benzene ring, respectively. In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds into chains along [100]. Furthermore, weak C—H⋯O and C—H⋯π inter­actions, in addition to π–π inter­actions with centroid–centroid distances in the range 3.5826 (13)–3.9681 (13) Å, are also observed.

Related literature

For standard bond-length data, see: Allen et al. (1987). For background to benzimidazoles and their applications, see: Chassaing et al. (2008); Kucukbay et al. (2003); Podunavac-Kuzmanovic & Cvetkovic (2010); Podunavac-Kuzmanovic et al. (1999); Podunavac-Kuzmanovic & Markov (2006); Xue et al. (2011). For related structures, see: Eltayeb et al. (2007, 2009); Eltayeb, Teoh, Chantrapromma & Fun (2011); Eltayeb, Teoh, Yeap & Fun (2011); Maldonado-Rogado et al. (2007); Tong & Ye (2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).graphic file with name e-67-m1182-scheme1.jpg

Experimental

Crystal data

  • [Zn(C21H16N3O)Cl]

  • M r = 427.21

  • Monoclinic, Inline graphic

  • a = 8.6338 (1) Å

  • b = 19.4952 (2) Å

  • c = 10.9687 (1) Å

  • β = 99.675 (1)°

  • V = 1819.97 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 100 K

  • 0.26 × 0.18 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.694, T max = 0.878

  • 22729 measured reflections

  • 5678 independent reflections

  • 3773 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.088

  • S = 1.03

  • 5678 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030170/lh6598sup1.cif

e-67-m1182-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030170/lh6598Isup2.hkl

e-67-m1182-Isup2.hkl (278KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C15–C20 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N1⋯Cl1i 0.75 (3) 2.53 (3) 3.2352 (19) 157 (2)
C2—H2A⋯O1ii 0.93 2.59 3.425 (3) 149
C12—H12ACg1iii 0.93 2.96 3.762 (3) 145
C21—H21CCg2iv 0.96 2.92 3.741 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Malaysian government and Universiti Sains Malaysia for the Research University Grant No. 1001/PKIMIA/815067. NEE thanks Universiti Sains Malaysia for a postdoctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. The authors also thank the Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Benzimidazole compounds and their complexes have been found to show diverse biological activity (Chassaing et al., 2008; Kucukbay et al., 2003; Podunavac-Kuzmanovic & Cvetkovic, 2010; Podunavac-Kuzmanovic et al., 1999; Podunavac-Kuzmanovic & Markov, 2006) including inhibition against enteroviruses (Xue et al., 2011). Our ongoing structural studies involves benzimidazoles (Eltayeb et al., 2007, 2009; Eltayeb, Teoh, Yeap & Fun, 2011) and their complexes (Eltayeb, Teoh, Chantrapromma & Fun, 2011). In the preparation of the title complex (I), 2-(2-aminophenyl)-1H-benzimidazole undergoes a condensation reaction with 2-hydroxy-4-methylbenzaldehyde to give a Schiff base ligand and forming the zinc(II) complex.

Complex (I) is a mononuclear zinc(II) complex (Fig. 1) in which the environment around the ZnII ion is a distorted tetrahedral geometry and the ZnII ion is four-coordinated by the two benzimidazole N atoms, one phenolate O atom and a Cl ligand. In the complex, the Schiff base ligand acts as a tridentate ligand. The bond angles around the central metal zinc(II) show large deviations from ideal tetrahedral geometry [O1-Zn1-Cl1 = 115.14 (5)°, N1-Zn1-Cl1 = 111.84 (5)°, N3-Zn1-Cl1 = 120.39 (6)°; and the bite angles N1–Zn1-N3 = 90.39 (7)° and O1-Zn1-N3 = 95.00 (7)°]. The Zn-N [1.9954 (17) and 2.2092 (18) Å], Zn-O [1.9137 (15) Å] and Zn-Cl [2.2249 (7) Å] bond lengths are comparable to those of similar Zn(II) benzimidazole complexes (Eltayeb, Teoh, Chantrapromma & Fun, 2011; Maldonado-Rogado et al., 2007; Tong & Ye, 2004). The benzimidazole ring system (C1–C7/N1–N2) is planar with an r.m.s. deviation of 0.0074 (2) Å and the largest deviation of 0.029 (2) Å for atom N1. The benzimidazole ring system forms dihedral angles of 26.68 (9) and 56.16 (9)° with the C8–C13 and C15–C20 rings, respectively. The dihedral angle between the C8–C13 and C15–C20 benzene rings is 35.26 (11)°. The bond lengths of ligand are within normal ranges (Allen et al., 1987).

In the crystal structure of (I) as shown Fig. 2, the molecules are linked through N—H···Cl hydrogen bonds (Table 1) into chains along the a axis. C—H···O and C—H···π weak interactions (Table 1) are also present. π–π interactions were also observed with centroid···centroid distances: Cg1···Cg2v = 3.6134 (13) Å; Cg1···Cg3vi = 3.9681 (13) Å and Cg2···Cg2v = 3.5826 (13) Å; Cg1, Cg2 and Cg3 are the centroids of the C1/C6–C7/N1–N2, C1–C6 and C8–C13 rings, respectively [symmetry codes: (v) 2-x, -x, 1-z; (vi) 2-x, -y, 2-z].

Experimental

The title compound was synthesized by adding 2-hydroxy-4-methylbenzaldehyde (0.136 g, 1.0 mmol) to a solution of 2-(2-aminophenyl)-1H-benzimidazole (0.209 g, 1.0 mmol) in ethanol (30 mL). The color of the resulting solution was pale-yellow. Upon adding zinc chloride (0.136 g, 1.0 mmol), the color of the solution turned golden-yellow. The mixture was refluxed with stirring for 3 hrs. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from ethanol by slow evaporation at room temperature after several days.

Refinement

H atom attached to N2 was located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH; and 0.96 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.89 Å from Zn1 and the deepest hole is located at 0.74 Å from Zn1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed approximately along the c axis. N—H···Cl hydrogen bonds are shown as dashed lines.

Crystal data

[Zn(C21H16N3O)Cl] F(000) = 872
Mr = 427.21 Dx = 1.559 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5678 reflections
a = 8.6338 (1) Å θ = 2.1–30.7°
b = 19.4952 (2) Å µ = 1.51 mm1
c = 10.9687 (1) Å T = 100 K
β = 99.675 (1)° Block, yellow
V = 1819.97 (3) Å3 0.26 × 0.18 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 5678 independent reflections
Radiation source: sealed tube 3773 reflections with I > 2σ(I)
graphite Rint = 0.042
φ and ω scans θmax = 30.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −12→12
Tmin = 0.694, Tmax = 0.878 k = −28→26
22729 measured reflections l = −12→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.6885P] where P = (Fo2 + 2Fc2)/3
5678 reflections (Δ/σ)max = 0.001
249 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.66403 (3) 0.062335 (13) 0.71581 (2) 0.03608 (9)
Cl1 0.50460 (7) 0.00213 (4) 0.81468 (7) 0.05647 (19)
O1 0.56252 (18) 0.11090 (8) 0.57283 (14) 0.0414 (4)
N1 0.86821 (19) 0.01439 (9) 0.71573 (16) 0.0330 (4)
N2 1.1246 (2) −0.00194 (10) 0.76330 (18) 0.0375 (4)
N3 0.7792 (2) 0.14557 (9) 0.79697 (16) 0.0349 (4)
C1 0.9123 (2) −0.03570 (11) 0.63665 (19) 0.0336 (5)
C2 0.8211 (3) −0.07198 (12) 0.5421 (2) 0.0413 (5)
H2A 0.7133 −0.0651 0.5221 0.050*
C3 0.8977 (3) −0.11859 (13) 0.4794 (2) 0.0504 (6)
H3A 0.8401 −0.1447 0.4167 0.060*
C4 1.0616 (3) −0.12755 (13) 0.5080 (2) 0.0496 (6)
H4A 1.1098 −0.1590 0.4628 0.060*
C5 1.1522 (3) −0.09105 (12) 0.6007 (2) 0.0445 (6)
H5A 1.2606 −0.0967 0.6190 0.053*
C6 1.0740 (3) −0.04558 (11) 0.6655 (2) 0.0358 (5)
C7 0.9989 (2) 0.03287 (11) 0.79017 (19) 0.0318 (5)
C8 1.0111 (2) 0.08132 (11) 0.89379 (19) 0.0332 (5)
C9 1.1357 (3) 0.07388 (12) 0.9935 (2) 0.0388 (5)
H9A 1.2078 0.0386 0.9919 0.047*
C10 1.1532 (3) 0.11775 (13) 1.0936 (2) 0.0456 (6)
H10A 1.2370 0.1123 1.1582 0.055*
C11 1.0461 (3) 0.16957 (14) 1.0971 (2) 0.0520 (7)
H11A 1.0567 0.1986 1.1653 0.062*
C12 0.9230 (3) 0.17893 (13) 1.0006 (2) 0.0451 (6)
H12A 0.8517 0.2144 1.0042 0.054*
C13 0.9045 (2) 0.13597 (11) 0.89831 (19) 0.0351 (5)
C14 0.7407 (2) 0.20702 (12) 0.7581 (2) 0.0374 (5)
H14A 0.7912 0.2430 0.8042 0.045*
C15 0.6287 (2) 0.22529 (11) 0.6517 (2) 0.0362 (5)
C16 0.6017 (3) 0.29611 (12) 0.6307 (2) 0.0438 (6)
H16A 0.6503 0.3273 0.6890 0.053*
C17 0.5065 (3) 0.32035 (13) 0.5274 (2) 0.0470 (6)
H17A 0.4893 0.3673 0.5172 0.056*
C18 0.4349 (3) 0.27452 (12) 0.4370 (2) 0.0411 (5)
C19 0.4615 (3) 0.20532 (12) 0.4549 (2) 0.0408 (5)
H19A 0.4170 0.1753 0.3928 0.049*
C20 0.5529 (2) 0.17729 (12) 0.5628 (2) 0.0365 (5)
C21 0.3284 (3) 0.29989 (14) 0.3235 (2) 0.0541 (7)
H21A 0.3299 0.2681 0.2569 0.081*
H21B 0.3640 0.3440 0.3006 0.081*
H21C 0.2232 0.3038 0.3405 0.081*
H1N1 1.208 (3) 0.0047 (13) 0.793 (2) 0.051 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02462 (12) 0.03720 (15) 0.04474 (16) 0.00021 (11) 0.00096 (10) 0.00267 (12)
Cl1 0.0295 (3) 0.0641 (4) 0.0770 (5) −0.0005 (3) 0.0123 (3) 0.0210 (4)
O1 0.0393 (8) 0.0357 (9) 0.0447 (9) −0.0003 (7) −0.0063 (7) 0.0032 (7)
N1 0.0269 (8) 0.0347 (10) 0.0367 (9) −0.0008 (7) 0.0029 (7) 0.0039 (8)
N2 0.0252 (9) 0.0420 (11) 0.0433 (11) 0.0027 (9) 0.0000 (8) 0.0006 (9)
N3 0.0280 (8) 0.0382 (10) 0.0372 (10) 0.0010 (8) 0.0018 (7) −0.0020 (8)
C1 0.0344 (11) 0.0308 (11) 0.0357 (11) 0.0002 (9) 0.0062 (9) 0.0037 (9)
C2 0.0374 (12) 0.0410 (14) 0.0442 (13) −0.0029 (10) 0.0030 (10) 0.0003 (11)
C3 0.0646 (17) 0.0414 (14) 0.0440 (14) −0.0089 (13) 0.0054 (12) −0.0046 (12)
C4 0.0651 (17) 0.0369 (14) 0.0507 (15) 0.0040 (12) 0.0211 (13) −0.0006 (11)
C5 0.0437 (13) 0.0407 (13) 0.0505 (14) 0.0077 (11) 0.0118 (11) 0.0068 (12)
C6 0.0337 (11) 0.0356 (12) 0.0388 (12) 0.0015 (9) 0.0079 (9) 0.0054 (10)
C7 0.0262 (9) 0.0350 (11) 0.0340 (11) 0.0007 (9) 0.0043 (8) 0.0070 (9)
C8 0.0288 (10) 0.0352 (12) 0.0356 (11) −0.0040 (9) 0.0055 (8) 0.0050 (9)
C9 0.0322 (11) 0.0425 (13) 0.0401 (12) −0.0009 (10) 0.0014 (9) 0.0066 (10)
C10 0.0396 (12) 0.0573 (16) 0.0365 (12) −0.0095 (12) −0.0038 (10) 0.0043 (11)
C11 0.0538 (15) 0.0623 (17) 0.0377 (13) −0.0100 (14) 0.0017 (11) −0.0110 (12)
C12 0.0430 (13) 0.0491 (15) 0.0429 (13) 0.0009 (11) 0.0061 (10) −0.0089 (11)
C13 0.0281 (10) 0.0392 (12) 0.0367 (11) −0.0046 (9) 0.0021 (8) 0.0006 (10)
C14 0.0331 (11) 0.0389 (13) 0.0400 (12) 0.0001 (10) 0.0060 (9) −0.0046 (10)
C15 0.0327 (11) 0.0366 (12) 0.0398 (12) 0.0038 (9) 0.0075 (9) 0.0011 (10)
C16 0.0417 (13) 0.0394 (13) 0.0497 (14) 0.0029 (11) 0.0056 (11) −0.0042 (11)
C17 0.0442 (13) 0.0387 (14) 0.0581 (15) 0.0063 (11) 0.0084 (12) 0.0055 (12)
C18 0.0344 (11) 0.0458 (14) 0.0440 (13) 0.0070 (10) 0.0089 (10) 0.0078 (11)
C19 0.0370 (12) 0.0460 (14) 0.0385 (12) −0.0024 (10) 0.0036 (9) −0.0001 (10)
C20 0.0272 (10) 0.0426 (13) 0.0402 (12) 0.0003 (9) 0.0070 (9) −0.0010 (10)
C21 0.0474 (14) 0.0585 (17) 0.0544 (15) 0.0114 (13) 0.0022 (12) 0.0111 (13)

Geometric parameters (Å, °)

Zn1—O1 1.9137 (15) C8—C13 1.415 (3)
Zn1—N1 1.9954 (17) C9—C10 1.380 (3)
Zn1—N3 2.0292 (18) C9—H9A 0.9300
Zn1—Cl1 2.2249 (7) C10—C11 1.375 (3)
O1—C20 1.300 (3) C10—H10A 0.9300
N1—C7 1.327 (2) C11—C12 1.380 (3)
N1—C1 1.401 (3) C11—H11A 0.9300
N2—C7 1.354 (3) C12—C13 1.388 (3)
N2—C6 1.381 (3) C12—H12A 0.9300
N2—H1N1 0.75 (3) C14—C15 1.430 (3)
N3—C14 1.296 (3) C14—H14A 0.9300
N3—C13 1.427 (2) C15—C16 1.413 (3)
C1—C2 1.386 (3) C15—C20 1.428 (3)
C1—C6 1.392 (3) C16—C17 1.367 (3)
C2—C3 1.375 (3) C16—H16A 0.9300
C2—H2A 0.9300 C17—C18 1.399 (3)
C3—C4 1.408 (4) C17—H17A 0.9300
C3—H3A 0.9300 C18—C19 1.377 (3)
C4—C5 1.373 (3) C18—C21 1.501 (3)
C4—H4A 0.9300 C19—C20 1.417 (3)
C5—C6 1.381 (3) C19—H19A 0.9300
C5—H5A 0.9300 C21—H21A 0.9600
C7—C8 1.468 (3) C21—H21B 0.9600
C8—C9 1.406 (3) C21—H21C 0.9600
O1—Zn1—N1 120.95 (7) C10—C9—H9A 119.3
O1—Zn1—N3 95.00 (7) C8—C9—H9A 119.3
N1—Zn1—N3 90.39 (7) C11—C10—C9 119.6 (2)
O1—Zn1—Cl1 115.14 (5) C11—C10—H10A 120.2
N1—Zn1—Cl1 111.84 (5) C9—C10—H10A 120.2
N3—Zn1—Cl1 120.39 (6) C10—C11—C12 120.7 (2)
C20—O1—Zn1 125.15 (14) C10—C11—H11A 119.7
C7—N1—C1 106.20 (17) C12—C11—H11A 119.7
C7—N1—Zn1 122.18 (15) C11—C12—C13 120.6 (2)
C1—N1—Zn1 131.21 (13) C11—C12—H12A 119.7
C7—N2—C6 108.47 (18) C13—C12—H12A 119.7
C7—N2—H1N1 124 (2) C12—C13—C8 119.72 (19)
C6—N2—H1N1 127 (2) C12—C13—N3 121.3 (2)
C14—N3—C13 119.79 (18) C8—C13—N3 118.95 (19)
C14—N3—Zn1 120.98 (14) N3—C14—C15 126.9 (2)
C13—N3—Zn1 119.23 (14) N3—C14—H14A 116.6
C2—C1—C6 121.4 (2) C15—C14—H14A 116.6
C2—C1—N1 129.8 (2) C16—C15—C20 119.0 (2)
C6—C1—N1 108.80 (18) C16—C15—C14 116.5 (2)
C3—C2—C1 116.9 (2) C20—C15—C14 124.3 (2)
C3—C2—H2A 121.6 C17—C16—C15 122.2 (2)
C1—C2—H2A 121.6 C17—C16—H16A 118.9
C2—C3—C4 121.4 (2) C15—C16—H16A 118.9
C2—C3—H3A 119.3 C16—C17—C18 119.9 (2)
C4—C3—H3A 119.3 C16—C17—H17A 120.0
C5—C4—C3 121.8 (2) C18—C17—H17A 120.0
C5—C4—H4A 119.1 C19—C18—C17 118.8 (2)
C3—C4—H4A 119.1 C19—C18—C21 120.3 (2)
C4—C5—C6 116.5 (2) C17—C18—C21 120.9 (2)
C4—C5—H5A 121.7 C18—C19—C20 123.6 (2)
C6—C5—H5A 121.7 C18—C19—H19A 118.2
C5—C6—N2 132.6 (2) C20—C19—H19A 118.2
C5—C6—C1 122.0 (2) O1—C20—C19 118.2 (2)
N2—C6—C1 105.41 (19) O1—C20—C15 125.38 (19)
N1—C7—N2 111.11 (19) C19—C20—C15 116.4 (2)
N1—C7—C8 126.48 (19) C18—C21—H21A 109.5
N2—C7—C8 122.33 (18) C18—C21—H21B 109.5
C9—C8—C13 117.9 (2) H21A—C21—H21B 109.5
C9—C8—C7 118.8 (2) C18—C21—H21C 109.5
C13—C8—C7 123.31 (18) H21A—C21—H21C 109.5
C10—C9—C8 121.5 (2) H21B—C21—H21C 109.5
N1—Zn1—O1—C20 −107.74 (18) N1—C7—C8—C9 152.4 (2)
N3—Zn1—O1—C20 −14.28 (18) N2—C7—C8—C9 −24.0 (3)
Cl1—Zn1—O1—C20 112.73 (17) N1—C7—C8—C13 −28.3 (3)
O1—Zn1—N1—C7 116.26 (16) N2—C7—C8—C13 155.4 (2)
N3—Zn1—N1—C7 20.19 (17) C13—C8—C9—C10 0.7 (3)
Cl1—Zn1—N1—C7 −103.02 (16) C7—C8—C9—C10 −179.9 (2)
O1—Zn1—N1—C1 −55.4 (2) C8—C9—C10—C11 0.7 (4)
N3—Zn1—N1—C1 −151.41 (18) C9—C10—C11—C12 −1.2 (4)
Cl1—Zn1—N1—C1 85.37 (18) C10—C11—C12—C13 0.3 (4)
O1—Zn1—N3—C14 13.98 (18) C11—C12—C13—C8 1.1 (4)
N1—Zn1—N3—C14 135.10 (18) C11—C12—C13—N3 −179.0 (2)
Cl1—Zn1—N3—C14 −109.09 (17) C9—C8—C13—C12 −1.6 (3)
O1—Zn1—N3—C13 −166.00 (15) C7—C8—C13—C12 179.0 (2)
N1—Zn1—N3—C13 −44.88 (16) C9—C8—C13—N3 178.56 (19)
Cl1—Zn1—N3—C13 70.93 (16) C7—C8—C13—N3 −0.8 (3)
C7—N1—C1—C2 179.7 (2) C14—N3—C13—C12 40.8 (3)
Zn1—N1—C1—C2 −7.7 (3) Zn1—N3—C13—C12 −139.24 (19)
C7—N1—C1—C6 −0.9 (2) C14—N3—C13—C8 −139.4 (2)
Zn1—N1—C1—C6 171.74 (15) Zn1—N3—C13—C8 40.6 (2)
C6—C1—C2—C3 0.7 (3) C13—N3—C14—C15 174.0 (2)
N1—C1—C2—C3 −180.0 (2) Zn1—N3—C14—C15 −6.0 (3)
C1—C2—C3—C4 −1.6 (3) N3—C14—C15—C16 177.5 (2)
C2—C3—C4—C5 1.0 (4) N3—C14—C15—C20 −7.2 (4)
C3—C4—C5—C6 0.7 (4) C20—C15—C16—C17 −0.6 (4)
C4—C5—C6—N2 179.1 (2) C14—C15—C16—C17 175.0 (2)
C4—C5—C6—C1 −1.6 (3) C15—C16—C17—C18 −1.4 (4)
C7—N2—C6—C5 178.7 (2) C16—C17—C18—C19 0.5 (4)
C7—N2—C6—C1 −0.7 (2) C16—C17—C18—C21 179.3 (2)
C2—C1—C6—C5 1.0 (3) C17—C18—C19—C20 2.6 (4)
N1—C1—C6—C5 −178.5 (2) C21—C18—C19—C20 −176.2 (2)
C2—C1—C6—N2 −179.6 (2) Zn1—O1—C20—C19 −174.38 (15)
N1—C1—C6—N2 1.0 (2) Zn1—O1—C20—C15 6.2 (3)
C1—N1—C7—N2 0.4 (2) C18—C19—C20—O1 176.0 (2)
Zn1—N1—C7—N2 −173.03 (14) C18—C19—C20—C15 −4.5 (3)
C1—N1—C7—C8 −176.3 (2) C16—C15—C20—O1 −177.2 (2)
Zn1—N1—C7—C8 10.3 (3) C14—C15—C20—O1 7.6 (4)
C6—N2—C7—N1 0.2 (2) C16—C15—C20—C19 3.4 (3)
C6—N2—C7—C8 177.05 (19) C14—C15—C20—C19 −171.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N1···Cl1i 0.75 (3) 2.53 (3) 3.2352 (19) 157 (2)
C2—H2A···O1ii 0.93 2.59 3.425 (3) 149
C12—H12A···Cg1iii 0.93 2.96 3.762 (3) 145
C21—H21C···Cg2iv 0.96 2.92 3.741 (3) 144

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1; (iii) x, −y−1/2, z−1/2; (iv) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH6598).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chassaing, C., Berger, M., Heckeroth, A., IIg, T., Jaeger, M., Kern, C., Schmid, K. & Uphoff, M. (2008). J. Med. Chem 51, 1111–1114. [DOI] [PubMed]
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141–o4142.
  6. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, m1062–m1063. [DOI] [PMC free article] [PubMed]
  7. Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614. [DOI] [PMC free article] [PubMed]
  8. Eltayeb, N. E., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1721–o1722. [DOI] [PMC free article] [PubMed]
  9. Kucukbay, H., Durmaz, R., Orhan, E. & Gunal, S. (2003). Farmaco, 58, 431–437. [DOI] [PubMed]
  10. Maldonado-Rogado, M. A., Viñuelas-Zahínos, E., Luna-Giles, F. & Bernalte-García, A. (2007). Polyhedron, 26, 3112–3120.
  11. Podunavac-Kuzmanovic, S. & Cvetkovic, D. (2010). Rev. Roum. Chim 55, 363–367.
  12. Podunavac-Kuzmanovic, S. O., Leovac, L. M., Perisic-Janjic, N. U., Rogan, J. & Balaz, J. (1999). J. Serb. Chem. Soc 64, 381–388.
  13. Podunavac-Kuzmanovic, S. O. & Markov, S. L. (2006). Centr. Eur. J. Occupat. Environ. Med 12, 61–66.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Tong, Y.-P. & Ye, B.-H. (2004). Acta Cryst. E60, m1927–m1929.
  17. Xue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem 19, 2641–2649. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030170/lh6598sup1.cif

e-67-m1182-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030170/lh6598Isup2.hkl

e-67-m1182-Isup2.hkl (278KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES