Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 31;67(Pt 9):o2529–o2530. doi: 10.1107/S160053681103474X

3,3′-Diallyl-1,1′-[o-phenyl­enebis(methyl­ene)]diimidazol-3-ium bis­(hexa­fluoro­phosphate)

Rosenani A Haque a, Mohammed Z Ghdhayeb a, Madhukar Hemamalini b, Hoong-Kun Fun b,*,
PMCID: PMC3200788  PMID: 22065513

Abstract

In the cation of the title mol­ecular salt, C20H24N4 2+·2PF6 , the central benzene ring makes dihedral angles of 84.19 (7) and 79.10 (7)° with the pendant imidazole rings. In one of the hexa­fluoro­phosphate anions, the six F atoms are disordered over two sets of sites, with an occupancy ratio of 0.842 (3):0.158 (3). In the crystal, the cations and anions are linked by numerous C—H⋯F hydrogen bonds, thereby forming a three-dimensional network.

Related literature

For applications and properties of N-heterocyclic carbenes, see: Bielawski & Grubbs (2000); Herrmann et al. (1998); Yeung et al. (2011); Jokic et al. (2010); Yu et al. (2010); Esteruelas et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o2529-scheme1.jpg

Experimental

Crystal data

  • C20H24N4 2+·2PF6

  • M r = 610.37

  • Triclinic, Inline graphic

  • a = 7.3151 (3) Å

  • b = 12.4913 (4) Å

  • c = 13.8569 (5) Å

  • α = 101.810 (1)°

  • β = 94.603 (1)°

  • γ = 91.424 (1)°

  • V = 1234.27 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.82 × 0.61 × 0.48 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.801, T max = 0.874

  • 38348 measured reflections

  • 10789 independent reflections

  • 9422 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.142

  • S = 1.05

  • 10789 reflections

  • 368 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 1.45 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103474X/hb6386sup1.cif

e-67-o2529-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103474X/hb6386Isup2.hkl

e-67-o2529-Isup2.hkl (516.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103474X/hb6386Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯F5i 0.93 2.44 3.2625 (17) 148
C9—H9A⋯F8Aii 0.93 2.38 3.303 (3) 171
C10—H10A⋯F2iii 0.93 2.47 3.2429 (18) 141
C14—H14A⋯F3 0.97 2.41 3.3065 (16) 154
C14—H14B⋯F9Aii 0.97 2.42 3.224 (2) 140
C15—H15A⋯F5 0.93 2.51 3.2100 (15) 132
C17—H17A⋯F12Aiv 0.93 2.42 3.279 (2) 154
C18—H18B⋯F1ii 0.97 2.55 3.349 (2) 140
C19—H19A⋯F12Av 0.93 2.50 3.364 (2) 155
C20—H20A⋯F8Avi 0.93 2.40 3.158 (3) 139
C20—H20B⋯F1vii 0.93 2.45 3.267 (2) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

RAH thank Universiti Sains Malaysia for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grants (1001/PKIMIA/813023 and 1001/PKIMIA/811157). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

N-heterocyclic carbene (NHC) ligands have long been at the forefront of catalytic research and are studied extensively for the preparation of various transition metal catalysts (Bielawski & Grubbs, 2000; Herrmann et al., 1998). NHCs, on account of their strong chelation, stability towards air and moisture, modest cost and their availability in ionic form, makes them versatile precursors in catalysis ranging from C–C coupling to olefin polymerizations (Yeung et al., 2011; Jokic et al., 2010; Yu et al., 2010). The main point of focus in the reported compound is the presence of ally and methylene groups, which rotate the molecule when treated with metal ion to form a cage-like- structure suitable for the polymerization of ethylene and other higher olefins (Esteruelas et al., 2003). Fortified by the highly active and interesting characteristics obtained from complexes ligated by bis- carbene NHC backbone, the present ligand system is designed and synthesized in view of getting stable and active olefin polymerization catalyst.

The asymmetric unit of the title compound, (Fig. 1), consists of a 1,2-bis(allylimidazole-1-ylmethyl)benzene cation and two hexafluoro phosphate anions. In one of the PF6- octahedral anions, all F atoms are disordered over two sets of sites, with occupancy ratio of 0.842 (3): 0.158 (3). The central benzene (C1–C6) ring makes dihedral angles of 84.19 (7)° and 79.10 (7)° with the terminal imidazole (N1,N2/C8–C10)/ (N3,N4/C15–C17) rings, respectively. The distorted octahedral geometry of phosphate ions has typical P–F distances [1.480 (9)–1.615 (7) Å] and F—P—F angles [47.5 (4)–179.59 (7)°]. All bond lengths and bond angles in (I) are in the range of expected values.

In the crystal (Fig. 2), the cations and anions are linked together via intermolecular C—H···F (Table 1) hydrogen bonds forming a three-dimensional network.

Experimental

A mixture of imidazole (0.9 g, 13.0 mmol) and sodium hydroxide (0.5 g, 12 mmol) in DMSO (5 mL) was heated to 90°C for 2 h, and then was cooled to room temperature. A solution of 1,2-bis(bromomethyl)benzene (1.5 g, 5.7 mmol) in DMSO (10 mL) was added to the mixture and heated slowly to 40°C for 1 h with constant stirring. The solution obtained was poured into ice-cold water (40 mL). The precipitate was collected, washed with water, and recrystallized from methanol/water to give 1,2-bis(N-imidazole- 1-ylmethyl)benzene [1] as a white solid (0.95 g, 79 %). Furthernore, a mixture of [1] (0.5 g, 2.1 mmol) and allyl bromide (0.7 g, 6.1 mmol) in acetonitrile (20 mL) was refluxed for 24 h. The solvent was removed under reduced pressure to yield a pale-brown oil, which was converted directly to its corresponding hexafluorophosphate salt by metathesis reaction using KPF6 (0.76g, 4.0 mmol) in 20 ml of methanol. The precipitate formed was collected and washed with distilled water (2 × 5 ml), and recrystallized from acetonitrile to give colorless solid. (1.1 g, 80 %). Colourless blocks of (I) were obtained by slow evaporation of the salt solution in acetonitrile at room temperature.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). A rotating group model was applied to the methyl groups. In one of the PF6- octahedra, all F atoms are disordered over two sets of sites, with occupancy ratio of 0.842 (3):0.158 (3).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the major component of the title compound, showing hydrogen-bonded (dashed lines) network.

Crystal data

C20H24N42+·2PF6 Z = 2
Mr = 610.37 F(000) = 620
Triclinic, P1 Dx = 1.642 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3151 (3) Å Cell parameters from 9808 reflections
b = 12.4913 (4) Å θ = 2.5–35.1°
c = 13.8569 (5) Å µ = 0.29 mm1
α = 101.810 (1)° T = 100 K
β = 94.603 (1)° Block, colourless
γ = 91.424 (1)° 0.82 × 0.61 × 0.48 mm
V = 1234.27 (8) Å3

Data collection

Bruker APEXII DUO CCD diffractometer 10789 independent reflections
Radiation source: fine-focus sealed tube 9422 reflections with I > 2σ(I)
graphite Rint = 0.016
φ and ω scans θmax = 35.1°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→10
Tmin = 0.801, Tmax = 0.874 k = −20→20
38348 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.8687P] where P = (Fo2 + 2Fc2)/3
10789 reflections (Δ/σ)max = 0.001
368 parameters Δρmax = 1.45 e Å3
15 restraints Δρmin = −0.91 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.54544 (4) 0.74563 (2) 0.15374 (2) 0.01863 (7)
F1 0.5790 (2) 0.83688 (11) 0.25409 (9) 0.0502 (3)
F2 0.5502 (2) 0.84110 (9) 0.09108 (10) 0.0468 (3)
F3 0.53920 (14) 0.65162 (9) 0.21542 (9) 0.0359 (2)
F4 0.51464 (15) 0.65782 (8) 0.05282 (7) 0.0340 (2)
F5 0.76397 (14) 0.73551 (11) 0.15226 (8) 0.0413 (3)
F6 0.32943 (13) 0.75680 (9) 0.15780 (9) 0.0344 (2)
P2 0.22213 (5) 0.30131 (3) 0.40480 (2) 0.01929 (7)
F7A 0.3956 (4) 0.3793 (2) 0.4200 (2) 0.0999 (10) 0.842 (3)
F8A 0.0484 (3) 0.2183 (2) 0.3855 (2) 0.0850 (9) 0.842 (3)
F9A 0.0911 (3) 0.39801 (16) 0.43888 (12) 0.0695 (8) 0.842 (3)
F10A 0.3494 (3) 0.20165 (14) 0.36918 (11) 0.0528 (5) 0.842 (3)
F11A 0.2050 (4) 0.3261 (3) 0.29691 (16) 0.0730 (9) 0.842 (3)
F12A 0.2420 (3) 0.27306 (15) 0.51330 (10) 0.0334 (3) 0.842 (3)
F7B 0.4422 (10) 0.3158 (7) 0.4133 (5) 0.0361 (16)* 0.158 (3)
F8B 0.0083 (12) 0.3055 (8) 0.4068 (7) 0.052 (2)* 0.158 (3)
F9B 0.2255 (12) 0.4261 (6) 0.4665 (6) 0.0400 (17)* 0.158 (3)
F10B 0.2296 (15) 0.1851 (7) 0.3547 (7) 0.052 (2)* 0.158 (3)
F11B 0.1483 (12) 0.3031 (7) 0.2934 (7) 0.0314 (17)* 0.158 (3)
F12B 0.2737 (12) 0.3018 (7) 0.5120 (6) 0.0256 (17)* 0.158 (3)
N1 0.59431 (14) 0.27887 (8) 0.20617 (8) 0.01726 (16)
N2 0.42044 (15) 0.13849 (9) 0.13427 (8) 0.02092 (19)
N3 1.06450 (14) 0.66033 (8) 0.35317 (7) 0.01654 (16)
N4 1.20454 (14) 0.81979 (8) 0.38440 (8) 0.01757 (17)
C1 0.95950 (15) 0.49943 (8) 0.22093 (8) 0.01440 (16)
C2 1.10935 (16) 0.51829 (9) 0.16968 (9) 0.01721 (18)
H2A 1.1900 0.5779 0.1953 0.021*
C3 1.13981 (17) 0.44894 (10) 0.08057 (9) 0.01942 (19)
H3A 1.2403 0.4622 0.0470 0.023*
C4 1.01961 (18) 0.35991 (10) 0.04209 (9) 0.0199 (2)
H4A 1.0396 0.3132 −0.0173 0.024*
C5 0.86910 (17) 0.34065 (10) 0.09256 (9) 0.01891 (19)
H5A 0.7886 0.2811 0.0665 0.023*
C6 0.83773 (15) 0.40962 (9) 0.18177 (8) 0.01586 (17)
C7 0.67134 (19) 0.39112 (10) 0.23602 (11) 0.0239 (2)
H7A 0.7062 0.4070 0.3067 0.029*
H7B 0.5780 0.4414 0.2229 0.029*
C8 0.44306 (16) 0.24647 (11) 0.14644 (9) 0.0204 (2)
H8A 0.3660 0.2917 0.1179 0.024*
C9 0.67130 (17) 0.18858 (10) 0.23291 (10) 0.0215 (2)
H9A 0.7785 0.1880 0.2737 0.026*
C10 0.56075 (19) 0.10063 (10) 0.18845 (11) 0.0238 (2)
H10A 0.5769 0.0284 0.1937 0.029*
C11 0.2661 (2) 0.07107 (15) 0.07509 (11) 0.0331 (3)
H11A 0.3100 0.0005 0.0449 0.040*
H11B 0.2206 0.1065 0.0224 0.040*
C12 0.11325 (18) 0.05405 (12) 0.13527 (10) 0.0243 (2)
H12A 0.0634 0.1156 0.1718 0.029*
C13 0.0442 (2) −0.04225 (15) 0.14014 (14) 0.0371 (4)
H13A 0.0912 −0.1053 0.1044 0.044*
H13B −0.0518 −0.0475 0.1793 0.044*
C14 0.92288 (16) 0.57296 (9) 0.31803 (8) 0.01732 (18)
H14A 0.8051 0.6056 0.3100 0.021*
H14B 0.9152 0.5289 0.3678 0.021*
C15 1.04896 (16) 0.76409 (9) 0.34527 (8) 0.01693 (18)
H15A 0.9468 0.7930 0.3172 0.020*
C16 1.23543 (18) 0.64893 (10) 0.39896 (10) 0.0215 (2)
H16A 1.2816 0.5849 0.4138 0.026*
C17 1.32333 (17) 0.74889 (10) 0.41826 (10) 0.0219 (2)
H17A 1.4414 0.7663 0.4486 0.026*
C18 1.24241 (19) 0.93714 (10) 0.39202 (10) 0.0224 (2)
H18A 1.1445 0.9658 0.3545 0.027*
H18B 1.3558 0.9472 0.3625 0.027*
C19 1.25869 (19) 1.00104 (10) 0.49639 (10) 0.0232 (2)
H19A 1.2934 1.0749 0.5061 0.028*
C20 1.2287 (3) 0.96299 (12) 0.57563 (11) 0.0311 (3)
H20A 1.1938 0.8897 0.5696 0.037*
H20B 1.2425 1.0094 0.6377 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01926 (14) 0.01710 (13) 0.01805 (13) −0.00355 (10) 0.00474 (10) −0.00048 (10)
F1 0.0604 (8) 0.0465 (6) 0.0319 (5) −0.0184 (6) 0.0144 (5) −0.0209 (5)
F2 0.0717 (9) 0.0278 (5) 0.0478 (6) −0.0017 (5) 0.0234 (6) 0.0169 (4)
F3 0.0299 (5) 0.0422 (5) 0.0423 (5) 0.0034 (4) 0.0019 (4) 0.0250 (5)
F4 0.0390 (5) 0.0303 (4) 0.0255 (4) 0.0027 (4) −0.0032 (4) −0.0085 (3)
F5 0.0190 (4) 0.0666 (8) 0.0344 (5) −0.0085 (4) 0.0067 (3) 0.0012 (5)
F6 0.0226 (4) 0.0368 (5) 0.0476 (6) 0.0089 (3) 0.0096 (4) 0.0142 (4)
P2 0.01918 (14) 0.02183 (14) 0.01876 (13) 0.00482 (10) 0.00316 (10) 0.00761 (10)
F7A 0.0879 (18) 0.0702 (16) 0.138 (2) −0.0555 (15) 0.0115 (16) 0.0189 (15)
F8A 0.0454 (10) 0.1067 (19) 0.0978 (17) −0.0443 (12) −0.0295 (10) 0.0286 (14)
F9A 0.1145 (19) 0.0675 (11) 0.0424 (8) 0.0716 (13) 0.0364 (10) 0.0293 (8)
F10A 0.0746 (12) 0.0617 (9) 0.0329 (6) 0.0502 (9) 0.0262 (7) 0.0210 (6)
F11A 0.0772 (16) 0.125 (2) 0.0434 (9) 0.0672 (16) 0.0339 (10) 0.0599 (12)
F12A 0.0513 (9) 0.0343 (8) 0.0182 (5) 0.0205 (7) 0.0089 (5) 0.0097 (5)
N1 0.0144 (4) 0.0159 (4) 0.0204 (4) −0.0024 (3) 0.0010 (3) 0.0019 (3)
N2 0.0190 (4) 0.0244 (5) 0.0175 (4) −0.0083 (3) −0.0011 (3) 0.0021 (3)
N3 0.0161 (4) 0.0142 (4) 0.0177 (4) −0.0004 (3) −0.0010 (3) 0.0007 (3)
N4 0.0180 (4) 0.0157 (4) 0.0179 (4) −0.0024 (3) −0.0017 (3) 0.0025 (3)
C1 0.0146 (4) 0.0133 (4) 0.0151 (4) 0.0005 (3) 0.0011 (3) 0.0026 (3)
C2 0.0162 (4) 0.0161 (4) 0.0198 (4) −0.0006 (3) 0.0029 (3) 0.0044 (3)
C3 0.0195 (5) 0.0205 (5) 0.0198 (5) 0.0027 (4) 0.0062 (4) 0.0057 (4)
C4 0.0228 (5) 0.0205 (5) 0.0160 (4) 0.0024 (4) 0.0045 (4) 0.0014 (4)
C5 0.0199 (5) 0.0177 (4) 0.0172 (4) −0.0011 (4) 0.0021 (4) −0.0008 (3)
C6 0.0156 (4) 0.0146 (4) 0.0165 (4) −0.0011 (3) 0.0026 (3) 0.0009 (3)
C7 0.0235 (5) 0.0163 (4) 0.0297 (6) −0.0052 (4) 0.0115 (5) −0.0034 (4)
C8 0.0154 (4) 0.0248 (5) 0.0219 (5) −0.0023 (4) −0.0009 (4) 0.0086 (4)
C9 0.0177 (5) 0.0213 (5) 0.0251 (5) −0.0005 (4) −0.0033 (4) 0.0058 (4)
C10 0.0244 (6) 0.0176 (5) 0.0288 (6) −0.0020 (4) 0.0016 (4) 0.0044 (4)
C11 0.0277 (7) 0.0465 (8) 0.0199 (5) −0.0208 (6) −0.0006 (5) −0.0018 (5)
C12 0.0194 (5) 0.0271 (6) 0.0241 (5) −0.0062 (4) 0.0011 (4) 0.0010 (4)
C13 0.0315 (7) 0.0406 (8) 0.0410 (8) −0.0171 (6) −0.0132 (6) 0.0212 (7)
C14 0.0175 (4) 0.0153 (4) 0.0174 (4) −0.0026 (3) 0.0020 (3) −0.0006 (3)
C15 0.0175 (4) 0.0155 (4) 0.0166 (4) −0.0004 (3) −0.0015 (3) 0.0018 (3)
C16 0.0202 (5) 0.0169 (4) 0.0253 (5) 0.0021 (4) −0.0047 (4) 0.0020 (4)
C17 0.0177 (5) 0.0192 (5) 0.0262 (5) −0.0002 (4) −0.0051 (4) 0.0019 (4)
C18 0.0269 (6) 0.0175 (5) 0.0229 (5) −0.0058 (4) −0.0013 (4) 0.0065 (4)
C19 0.0243 (5) 0.0151 (4) 0.0276 (6) −0.0024 (4) −0.0049 (4) 0.0018 (4)
C20 0.0443 (8) 0.0246 (6) 0.0216 (5) 0.0020 (5) −0.0021 (5) 0.0001 (4)

Geometric parameters (Å, °)

P1—F4 1.5870 (9) C2—H2A 0.9300
P1—F3 1.5893 (10) C3—C4 1.3884 (18)
P1—F6 1.5942 (10) C3—H3A 0.9300
P1—F1 1.6049 (10) C4—C5 1.3923 (17)
P1—F5 1.6081 (11) C4—H4A 0.9300
P1—F2 1.6137 (11) C5—C6 1.3937 (16)
P2—F10B 1.480 (9) C5—H5A 0.9300
P2—F12B 1.502 (9) C6—C7 1.5179 (17)
P2—F7A 1.5544 (19) C7—H7A 0.9700
P2—F8B 1.569 (9) C7—H7B 0.9700
P2—F9A 1.5803 (14) C8—H8A 0.9300
P2—F11A 1.5838 (16) C9—C10 1.3562 (18)
P2—F8A 1.5897 (17) C9—H9A 0.9300
P2—F10A 1.5935 (13) C10—H10A 0.9300
P2—F11B 1.599 (10) C11—C12 1.484 (2)
P2—F7B 1.607 (7) C11—H11A 0.9700
P2—F12A 1.6095 (13) C11—H11B 0.9700
P2—F9B 1.615 (7) C12—C13 1.310 (2)
N1—C8 1.3292 (15) C12—H12A 0.9300
N1—C9 1.3769 (16) C13—H13A 0.9300
N1—C7 1.4630 (15) C13—H13B 0.9300
N2—C8 1.3290 (17) C14—H14A 0.9700
N2—C10 1.3735 (18) C14—H14B 0.9700
N2—C11 1.4758 (17) C15—H15A 0.9300
N3—C15 1.3297 (14) C16—C17 1.3564 (17)
N3—C16 1.3802 (16) C16—H16A 0.9300
N3—C14 1.4652 (15) C17—H17A 0.9300
N4—C15 1.3343 (15) C18—C19 1.4960 (19)
N4—C17 1.3793 (16) C18—H18A 0.9700
N4—C18 1.4657 (16) C18—H18B 0.9700
C1—C2 1.3936 (16) C19—C20 1.314 (2)
C1—C6 1.4036 (15) C19—H19A 0.9300
C1—C14 1.5132 (15) C20—H20A 0.9300
C2—C3 1.3931 (17) C20—H20B 0.9300
F4—P1—F3 90.88 (6) C10—N2—C11 125.68 (13)
F4—P1—F6 90.95 (6) C15—N3—C16 108.80 (10)
F3—P1—F6 89.82 (6) C15—N3—C14 125.17 (10)
F4—P1—F1 178.35 (7) C16—N3—C14 126.03 (10)
F3—P1—F1 90.66 (7) C15—N4—C17 108.63 (10)
F6—P1—F1 89.64 (7) C15—N4—C18 125.89 (11)
F4—P1—F5 90.27 (6) C17—N4—C18 125.46 (10)
F3—P1—F5 89.73 (6) C2—C1—C6 119.38 (10)
F6—P1—F5 178.71 (6) C2—C1—C14 122.12 (10)
F1—P1—F5 89.15 (7) C6—C1—C14 118.50 (10)
F4—P1—F2 89.10 (6) C3—C2—C1 120.81 (11)
F3—P1—F2 179.59 (7) C3—C2—H2A 119.6
F6—P1—F2 89.77 (7) C1—C2—H2A 119.6
F1—P1—F2 89.37 (7) C4—C3—C2 119.76 (11)
F5—P1—F2 90.68 (7) C4—C3—H3A 120.1
F10B—P2—F12B 104.3 (5) C2—C3—H3A 120.1
F10B—P2—F7A 120.8 (4) C3—C4—C5 119.85 (11)
F12B—P2—F7A 81.8 (3) C3—C4—H4A 120.1
F10B—P2—F8B 97.6 (6) C5—C4—H4A 120.1
F12B—P2—F8B 99.3 (5) C4—C5—C6 120.74 (11)
F7A—P2—F8B 140.3 (4) C4—C5—H5A 119.6
F10B—P2—F9A 144.9 (4) C6—C5—H5A 119.6
F12B—P2—F9A 88.4 (4) C5—C6—C1 119.47 (10)
F7A—P2—F9A 93.11 (16) C5—C6—C7 121.16 (10)
F8B—P2—F9A 47.5 (4) C1—C6—C7 119.35 (10)
F10B—P2—F11A 85.7 (4) N1—C7—C6 112.31 (10)
F12B—P2—F11A 165.4 (3) N1—C7—H7A 109.1
F7A—P2—F11A 83.93 (18) C6—C7—H7A 109.1
F8B—P2—F11A 89.8 (4) N1—C7—H7B 109.1
F9A—P2—F11A 89.34 (9) C6—C7—H7B 109.1
F10B—P2—F8A 57.0 (4) H7A—C7—H7B 107.9
F12B—P2—F8A 99.6 (3) N2—C8—N1 108.53 (11)
F7A—P2—F8A 177.58 (17) N2—C8—H8A 125.7
F9A—P2—F8A 88.93 (15) N1—C8—H8A 125.7
F11A—P2—F8A 94.79 (16) C10—C9—N1 106.84 (11)
F12B—P2—F10A 92.3 (3) C10—C9—H9A 126.6
F7A—P2—F10A 88.43 (15) N1—C9—H9A 126.6
F8B—P2—F10A 130.9 (4) C9—C10—N2 107.04 (11)
F9A—P2—F10A 178.41 (13) C9—C10—H10A 126.5
F11A—P2—F10A 90.41 (9) N2—C10—H10A 126.5
F8A—P2—F10A 89.52 (14) N2—C11—C12 112.51 (11)
F10B—P2—F11B 77.5 (5) N2—C11—H11A 109.1
F12B—P2—F11B 174.7 (5) C12—C11—H11A 109.1
F7A—P2—F11B 101.7 (3) N2—C11—H11B 109.1
F8B—P2—F11B 75.5 (5) C12—C11—H11B 109.1
F9A—P2—F11B 87.4 (4) H11A—C11—H11B 107.8
F8A—P2—F11B 77.1 (3) C13—C12—C11 124.08 (16)
F10A—P2—F11B 91.9 (4) C13—C12—H12A 118.0
F10B—P2—F7B 91.2 (5) C11—C12—H12A 118.0
F12B—P2—F7B 77.3 (4) C12—C13—H13A 120.0
F8B—P2—F7B 171.1 (5) C12—C13—H13B 120.0
F9A—P2—F7B 123.7 (3) H13A—C13—H13B 120.0
F11A—P2—F7B 92.0 (3) N3—C14—C1 113.10 (9)
F8A—P2—F7B 146.7 (3) N3—C14—H14A 109.0
F10A—P2—F7B 57.8 (3) C1—C14—H14A 109.0
F11B—P2—F7B 107.7 (4) N3—C14—H14B 109.0
F10B—P2—F12A 92.9 (4) C1—C14—H14B 109.0
F7A—P2—F12A 96.31 (15) H14A—C14—H14B 107.8
F8B—P2—F12A 91.0 (4) N3—C15—N4 108.57 (10)
F9A—P2—F12A 92.16 (7) N3—C15—H15A 125.7
F11A—P2—F12A 178.46 (10) N4—C15—H15A 125.7
F8A—P2—F12A 84.92 (12) C17—C16—N3 106.94 (11)
F10A—P2—F12A 88.08 (7) C17—C16—H16A 126.5
F11B—P2—F12A 162.0 (3) N3—C16—H16A 126.5
F7B—P2—F12A 87.4 (3) C16—C17—N4 107.06 (10)
F10B—P2—F9B 175.4 (5) C16—C17—H17A 126.5
F12B—P2—F9B 71.5 (4) N4—C17—H17A 126.5
F7A—P2—F9B 57.3 (3) N4—C18—C19 113.13 (10)
F8B—P2—F9B 85.1 (5) N4—C18—H18A 109.0
F11A—P2—F9B 98.1 (3) C19—C18—H18A 109.0
F8A—P2—F9B 125.0 (3) N4—C18—H18B 109.0
F10A—P2—F9B 143.2 (3) C19—C18—H18B 109.0
F11B—P2—F9B 106.8 (4) H18A—C18—H18B 107.8
F7B—P2—F9B 86.0 (4) C20—C19—C18 126.33 (12)
F12A—P2—F9B 83.3 (3) C20—C19—H19A 116.8
C8—N1—C9 108.77 (10) C18—C19—H19A 116.8
C8—N1—C7 126.00 (11) C19—C20—H20A 120.0
C9—N1—C7 125.19 (11) C19—C20—H20B 120.0
C8—N2—C10 108.81 (10) H20A—C20—H20B 120.0
C8—N2—C11 125.47 (13)
C6—C1—C2—C3 −0.28 (17) C8—N2—C10—C9 −0.89 (16)
C14—C1—C2—C3 179.80 (11) C11—N2—C10—C9 −178.88 (13)
C1—C2—C3—C4 0.05 (18) C8—N2—C11—C12 −92.85 (18)
C2—C3—C4—C5 0.21 (18) C10—N2—C11—C12 84.81 (19)
C3—C4—C5—C6 −0.24 (19) N2—C11—C12—C13 −125.16 (17)
C4—C5—C6—C1 0.01 (18) C15—N3—C14—C1 101.58 (13)
C4—C5—C6—C7 178.37 (12) C16—N3—C14—C1 −77.92 (15)
C2—C1—C6—C5 0.25 (17) C2—C1—C14—N3 −2.85 (15)
C14—C1—C6—C5 −179.82 (10) C6—C1—C14—N3 177.22 (10)
C2—C1—C6—C7 −178.15 (11) C16—N3—C15—N4 0.08 (14)
C14—C1—C6—C7 1.78 (16) C14—N3—C15—N4 −179.49 (10)
C8—N1—C7—C6 −103.72 (15) C17—N4—C15—N3 0.09 (14)
C9—N1—C7—C6 73.79 (16) C18—N4—C15—N3 −178.87 (11)
C5—C6—C7—N1 20.64 (18) C15—N3—C16—C17 −0.22 (15)
C1—C6—C7—N1 −161.00 (11) C14—N3—C16—C17 179.35 (11)
C10—N2—C8—N1 0.45 (15) N3—C16—C17—N4 0.26 (15)
C11—N2—C8—N1 178.44 (12) C15—N4—C17—C16 −0.22 (15)
C9—N1—C8—N2 0.16 (15) C18—N4—C17—C16 178.74 (12)
C7—N1—C8—N2 178.01 (11) C15—N4—C18—C19 112.08 (14)
C8—N1—C9—C10 −0.71 (15) C17—N4—C18—C19 −66.71 (17)
C7—N1—C9—C10 −178.59 (12) N4—C18—C19—C20 −5.5 (2)
N1—C9—C10—N2 0.96 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4A···F5i 0.93 2.44 3.2625 (17) 148
C9—H9A···F8Aii 0.93 2.38 3.303 (3) 171
C10—H10A···F2iii 0.93 2.47 3.2429 (18) 141
C14—H14A···F3 0.97 2.41 3.3065 (16) 154
C14—H14B···F9Aii 0.97 2.42 3.224 (2) 140
C15—H15A···F5 0.93 2.51 3.2100 (15) 132
C17—H17A···F12Aiv 0.93 2.42 3.279 (2) 154
C18—H18B···F1ii 0.97 2.55 3.349 (2) 140
C19—H19A···F12Av 0.93 2.50 3.364 (2) 155
C20—H20A···F8Avi 0.93 2.40 3.158 (3) 139
C20—H20B···F1vii 0.93 2.45 3.267 (2) 146

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x+1, y, z; (iii) x, y−1, z; (iv) −x+2, −y+1, −z+1; (v) x+1, y+1, z; (vi) −x+1, −y+1, −z+1; (vii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6386).

References

  1. Bielawski, C. W. & Grubbs, R. H. (2000). Angew. Chem. Int. Ed 39, 2903–2906. [DOI] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Esteruelas, M. A., López, A. M., Méndez, L., Oliván, M. & Ońate, E. (2003). Organometallics, 22, 395–406.
  5. Herrmann, W. A., Reisinger, C.-P. & Spiegler, M. (1998). J. Organomet. Chem 557, 93–96.
  6. Jokic, N. B., Straubinger, C. S., Goh, S. L. M., Herdtweck, E., Herrmann, W. A. & Kuehn, F. E. (2010). Inorg. Chim. Acta, 363, 4181–4188.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Yeung, A. D., Ng, P. S. & Huynh, H. V. (2011). J. Organomet. Chem., 696, 112–117.
  10. Yu, S. T., Na, S. J., Lim, T. S. & Lee, B. Y. (2010). Macromolecules, 43, 725–730.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103474X/hb6386sup1.cif

e-67-o2529-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103474X/hb6386Isup2.hkl

e-67-o2529-Isup2.hkl (516.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103474X/hb6386Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES