Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2367. doi: 10.1107/S1600536811032375

1-(4-Chloro­benzo­yl)-3-(3-methyl­pyridin-2-yl)thio­urea

MSukeri M Yusof a,*, Nurwahyuni A Mushtari a, Maisara A Kadir a, Bohari M Yamin b
PMCID: PMC3200797  PMID: 22058973

Abstract

The mol­ecule of the title compound, C14H12ClN3OS, consists of three approximately planar fragments: the central thio­urea group, the chloro­phenyl group and the picolyl (3-methyl­pyridin-2-yl) group with a maximum of 0.035 (2)° for an N atom from the mean square plane of the central thiourea group. The central fragment forms dihedral angles of 33.30 (8) and 76.78 (8)° with the chloro­phenyl and picolyl groups, respectively. With respect to the thio­urea C—N bonds, the 4-chloro­benzoyl group is positioned trans to the thiono S atoms, whereas the picolyl group lies in a cis position to it. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by inter­molecular C—H⋯N hydrogen bonds, forming chains along the a axis.

Related literature

For applications of thio­urea derivatives, see: Cunha et al. (2007); Srivastava et al. (2010); Manjula et al. (2009); Chen et al. (2006). For related structures, see: Estévez-Hernández et al. (2009); Binzet et al. (2009). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-67-o2367-scheme1.jpg

Experimental

Crystal data

  • C14H12ClN3OS

  • M r = 305.78

  • Monoclinic, Inline graphic

  • a = 7.8417 (15) Å

  • b = 7.1058 (13) Å

  • c = 25.585 (5) Å

  • β = 93.405 (4)°

  • V = 1423.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 0.44 × 0.31 × 0.14 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.839, T max = 0.944

  • 9917 measured reflections

  • 3421 independent reflections

  • 2188 reflections with I > 2/s(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.139

  • S = 1.04

  • 3421 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032375/yk2015sup1.cif

e-67-o2367-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032375/yk2015Isup2.hkl

e-67-o2367-Isup2.hkl (167.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032375/yk2015Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.98 2.655 (2) 135
C2—H2B⋯N3i 0.93 2.59 3.417 (3) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia, Faculty of Science and Technology, Universiti Malaysia Terengganu and the Ministry of Higher Education, Malaysia, for research grants UKM-GUP-NBT-08–27–110 and FRGS 59178.

supplementary crystallographic information

Comment

The synthesis of new thiourea derivatives has attracted great interest because of their wide range applications in research and technology, such as in pharmacology (Cunha et al., 2007), catalysis (Chen et al., 2006) and agriculture (Srivastava et al., 2010). The title compound, (I), is an isomer of the previously reported compound, 4-chloro-N-[N-(6-methyl-2-pyridyl)-carbamothioyl]benzamide (Binzet et al., 2009) except the methyl group is attached at the third position of the pyridine ring. The molecule adopts trans-cis configuration with respect to the position of 4-chlorobenzoyl and 2-picolyl groups relative to the thiono S atom across the thiourea C—N bonds. The bond lengths and angles are within normal ranges (Allen et al., 1987) and agree with previously reported analogous molecules (Estévez-Hernández et al., 2009; Binzet et al., 2009). The molecule consists of central thiourea fragment (N2/C8/S1/N1), pyridine (C9—C13/N3) and phenyl (C1—C6) rings which are nearly planar with largest deviation from the least square plane of 0.035 (2)Å for N1 atom.

The molecule is stabilized by intramolecular hydrogen bond, O1···H2A—N2, forming a pseudo-six membered ring, O1···H2A—N2—C8—N1—C7—O1 (Table 1). In crystal the molecules are linked by intermolecular hydrogen bond C2—H2···N3i, forming chains along the a axis (Fig. 2).

Experimental

2-amino-3-picoline (1.0 g, 0.5 mmol) was added dropwise into the mixture of ammonium thiocyanate (0.62 g, 0.5 mmol) and 4-chlorobenzoyl chloride (0.44 g, 0.5 mmol) diluted by 50 ml of dry acetone. The reaction mixture was refluxed with permanent stirring for 3 h. The resulting precipitate was filtered off and washed with cold methanol. The colorless crystals were obtained by recrystallization from acetonitrile. Yield: 46%; m.p. 170.1–171.1°C

Refinement

H atoms on the parent carbon atoms were positioned geometrically with C—H= 0.93–0.96 Å and constrained to ride on their parent atoms with Uiso(H)= xUeq(parent atom) where x=1.5 for CH3 group and 1.2 for CH groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I) viewed down the b axis. Hydrogen bonds are shown by dashed lines.

Crystal data

C14H12ClN3OS F(000) = 632
Mr = 305.78 Dx = 1.427 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 699 reflections
a = 7.8417 (15) Å θ = 1.6–28.0°
b = 7.1058 (13) Å µ = 0.41 mm1
c = 25.585 (5) Å T = 298 K
β = 93.405 (4)° Slab, colourless
V = 1423.1 (5) Å3 0.44 × 0.31 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3421 independent reflections
Radiation source: fine-focus sealed tube 2188 reflections with I > 2/s(I)
graphite Rint = 0.030
Detector resolution: 83.66 pixels mm-1 θmax = 28.0°, θmin = 1.6°
ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2003) k = −9→9
Tmin = 0.839, Tmax = 0.944 l = −30→33
9917 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.0755P] where P = (Fo2 + 2Fc2)/3
3421 reflections (Δ/σ)max = 0.001
181 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.21606 (9) 0.54075 (13) 0.35489 (3) 0.0897 (3)
S1 0.45565 (8) 0.34425 (9) 0.08001 (2) 0.0597 (2)
O1 0.4546 (2) 0.6680 (3) 0.23221 (6) 0.0657 (5)
N1 0.5639 (2) 0.4758 (3) 0.17178 (7) 0.0496 (5)
H1A 0.6480 0.4014 0.1669 0.060*
N2 0.3126 (2) 0.6067 (3) 0.13694 (7) 0.0501 (5)
H2A 0.3116 0.6688 0.1658 0.060*
N3 0.0289 (2) 0.5707 (3) 0.10740 (8) 0.0604 (5)
C2 0.8891 (3) 0.5112 (3) 0.23027 (9) 0.0485 (5)
H2B 0.8932 0.4886 0.1946 0.058*
C3 1.0381 (3) 0.5047 (3) 0.26218 (10) 0.0537 (6)
H3A 1.1421 0.4772 0.2483 0.064*
C4 1.0291 (3) 0.5398 (3) 0.31489 (9) 0.0552 (6)
C5 0.8769 (3) 0.5791 (3) 0.33639 (9) 0.0582 (6)
H5A 0.8734 0.6016 0.3721 0.070*
C6 0.7299 (3) 0.5850 (3) 0.30452 (8) 0.0537 (6)
H6A 0.6264 0.6120 0.3188 0.064*
C1 0.7344 (3) 0.5511 (3) 0.25111 (8) 0.0429 (5)
C7 0.5720 (3) 0.5711 (3) 0.21855 (8) 0.0465 (5)
C8 0.4375 (3) 0.4836 (3) 0.13118 (8) 0.0446 (5)
C9 0.1793 (3) 0.6406 (3) 0.09725 (8) 0.0437 (5)
C10 −0.0985 (3) 0.6033 (4) 0.07152 (12) 0.0758 (8)
H10A −0.2062 0.5565 0.0777 0.091*
C11 −0.0802 (4) 0.7006 (4) 0.02671 (12) 0.0784 (9)
H11A −0.1723 0.7180 0.0026 0.094*
C12 0.0767 (4) 0.7723 (4) 0.01786 (10) 0.0689 (7)
H12A 0.0919 0.8398 −0.0127 0.083*
C13 0.2135 (3) 0.7461 (3) 0.05369 (8) 0.0508 (5)
C14 0.3859 (4) 0.8282 (4) 0.04571 (12) 0.0781 (8)
H14A 0.3823 0.8960 0.0132 0.117*
H14B 0.4686 0.7289 0.0448 0.117*
H14C 0.4172 0.9125 0.0740 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0655 (5) 0.1158 (7) 0.0829 (5) −0.0260 (4) −0.0364 (4) 0.0270 (4)
S1 0.0599 (4) 0.0634 (4) 0.0533 (4) 0.0146 (3) −0.0178 (3) −0.0192 (3)
O1 0.0578 (10) 0.0846 (13) 0.0529 (10) 0.0209 (9) −0.0111 (8) −0.0216 (9)
N1 0.0472 (10) 0.0533 (11) 0.0462 (10) 0.0133 (8) −0.0145 (8) −0.0115 (8)
N2 0.0474 (10) 0.0602 (12) 0.0416 (10) 0.0094 (9) −0.0065 (8) −0.0091 (8)
N3 0.0439 (11) 0.0756 (14) 0.0614 (12) 0.0035 (10) 0.0013 (9) 0.0011 (10)
C2 0.0529 (13) 0.0471 (13) 0.0443 (12) −0.0004 (10) −0.0076 (10) −0.0045 (9)
C3 0.0443 (13) 0.0532 (14) 0.0629 (15) −0.0014 (10) −0.0043 (11) 0.0023 (11)
C4 0.0547 (14) 0.0499 (14) 0.0579 (14) −0.0154 (11) −0.0227 (12) 0.0120 (11)
C5 0.0666 (16) 0.0654 (16) 0.0411 (12) −0.0146 (13) −0.0087 (11) 0.0011 (11)
C6 0.0521 (13) 0.0615 (15) 0.0467 (13) −0.0054 (11) −0.0057 (10) −0.0036 (11)
C1 0.0483 (12) 0.0382 (11) 0.0408 (11) −0.0016 (9) −0.0078 (9) −0.0026 (9)
C7 0.0478 (12) 0.0487 (13) 0.0423 (12) 0.0026 (10) −0.0046 (10) −0.0046 (10)
C8 0.0431 (12) 0.0467 (12) 0.0429 (11) 0.0010 (9) −0.0068 (9) −0.0021 (9)
C9 0.0426 (12) 0.0454 (12) 0.0422 (11) 0.0077 (9) −0.0047 (9) −0.0048 (9)
C10 0.0441 (14) 0.092 (2) 0.090 (2) 0.0071 (14) −0.0097 (14) −0.0119 (18)
C11 0.074 (2) 0.083 (2) 0.0737 (19) 0.0307 (16) −0.0323 (15) −0.0139 (16)
C12 0.096 (2) 0.0565 (16) 0.0528 (15) 0.0230 (15) −0.0098 (14) 0.0027 (12)
C13 0.0644 (15) 0.0406 (12) 0.0471 (12) 0.0067 (11) 0.0003 (11) −0.0024 (10)
C14 0.088 (2) 0.0666 (18) 0.0811 (19) −0.0112 (15) 0.0187 (16) 0.0070 (15)

Geometric parameters (Å, °)

Cl1—C4 1.738 (2) C5—C6 1.372 (3)
S1—C8 1.654 (2) C5—H5A 0.9300
O1—C7 1.218 (3) C6—C1 1.390 (3)
N1—C7 1.373 (3) C6—H6A 0.9300
N1—C8 1.394 (2) C1—C7 1.487 (3)
N1—H1A 0.8600 C9—C13 1.382 (3)
N2—C8 1.328 (3) C10—C11 1.354 (4)
N2—C9 1.434 (3) C10—H10A 0.9300
N2—H2A 0.8600 C11—C12 1.363 (4)
N3—C9 1.320 (3) C11—H11A 0.9300
N3—C10 1.337 (3) C12—C13 1.382 (3)
C2—C3 1.385 (3) C12—H12A 0.9300
C2—C1 1.383 (3) C13—C14 1.498 (4)
C2—H2B 0.9300 C14—H14A 0.9600
C3—C4 1.377 (3) C14—H14B 0.9600
C3—H3A 0.9300 C14—H14C 0.9600
C4—C5 1.372 (4)
C7—N1—C8 128.59 (18) O1—C7—C1 122.05 (18)
C7—N1—H1A 115.7 N1—C7—C1 115.77 (19)
C8—N1—H1A 115.7 N2—C8—N1 116.12 (18)
C8—N2—C9 122.93 (17) N2—C8—S1 125.52 (16)
C8—N2—H2A 118.5 N1—C8—S1 118.34 (15)
C9—N2—H2A 118.5 N3—C9—C13 125.6 (2)
C9—N3—C10 116.1 (2) N3—C9—N2 114.81 (19)
C3—C2—C1 120.5 (2) C13—C9—N2 119.6 (2)
C3—C2—H2B 119.7 N3—C10—C11 123.9 (3)
C1—C2—H2B 119.7 N3—C10—H10A 118.1
C4—C3—C2 118.7 (2) C11—C10—H10A 118.1
C4—C3—H3A 120.6 C10—C11—C12 118.3 (3)
C2—C3—H3A 120.6 C10—C11—H11A 120.9
C3—C4—C5 121.7 (2) C12—C11—H11A 120.9
C3—C4—Cl1 119.1 (2) C11—C12—C13 120.8 (2)
C5—C4—Cl1 119.12 (19) C11—C12—H12A 119.6
C6—C5—C4 119.2 (2) C13—C12—H12A 119.6
C6—C5—H5A 120.4 C9—C13—C12 115.3 (2)
C4—C5—H5A 120.4 C9—C13—C14 122.8 (2)
C5—C6—C1 120.6 (2) C12—C13—C14 121.9 (2)
C5—C6—H6A 119.7 C13—C14—H14A 109.5
C1—C6—H6A 119.7 C13—C14—H14B 109.5
C6—C1—C2 119.2 (2) H14A—C14—H14B 109.5
C6—C1—C7 117.6 (2) C13—C14—H14C 109.5
C2—C1—C7 123.05 (19) H14A—C14—H14C 109.5
O1—C7—N1 122.2 (2) H14B—C14—H14C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O1 0.86 1.98 2.655 (2) 135
C2—H2B···N3i 0.93 2.59 3.417 (3) 148

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2015).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Binzet, G., Emen, F. M., Flörke, U., Yeşilkaynak, T., Külcü, N. & Arslan, H. (2009). Acta Cryst. E65, o81–o82. [DOI] [PMC free article] [PubMed]
  3. Bruker (2003). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, W., Li, R., Han, B., Bang-Jing, L., Ying-Chun, C., Wu, Y., Li-Sheng, D. & Yang, D. (2006). Eur. J. Org. Chem. pp. 1177–1184.
  5. Cunha, S., Macedo, F. C. M., Costa, G. A. N., Rodrigues, M. T., Verde, R. B. V., de Souza Neta, L. C., Vencato, I., Lariucci, C. & Sa, F. P. (2007). Monatsh. Chem. 138, 511–516.
  6. Estévez-Hernández, O., Duque, J., Pérez, H., Santos Jr, S. & Mascarenhas, Y. (2009). Acta Cryst. E65, o929–o930. [DOI] [PMC free article] [PubMed]
  7. Manjula, S. N., Noolvi, N. M., Parihar, K. V., Reddy, S. A. M., Ramani, V., Gadad, A. K., Singh, G., Kutty, N. G. & Rao, C. M. (2009). Eur. J. Med. Chem. 44, 2923–2929. [DOI] [PubMed]
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Srivastava, A. K., Suprasanna, P., Srivastava, S. & D’Souza, S. F. (2010). Plant Sci. 178, 517–522.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032375/yk2015sup1.cif

e-67-o2367-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032375/yk2015Isup2.hkl

e-67-o2367-Isup2.hkl (167.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032375/yk2015Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES