Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2458–o2459. doi: 10.1107/S1600536811033083

N-Benzyl-5-(dimethyl­amino)­naphthalene-1-sulfonamide

Pralav Bhatt a, Thavendran Govender b, Hendrik G Kruger a, Glenn E M Maguire a,*
PMCID: PMC3200799  PMID: 22065719

Abstract

The structure of the title compound, C19H20N2O2S, displays inter­molecular N—H⋯O hydrogen bonding, which generates inversion dimers. There is no π–π stacking in the crystal structure. The dihedral angle between the phenyl ring and naphthalene ring system is 59.16 (11)°.

Related literature

For the use of dansyl fluorescent analogs as insecticides and synergists, see: Himel et al. (1971). Dansyl probes have also been covalently incorporated into a variety of polymeric networks, see: Shea et al. (1989). Dansyl chromophoric compounds have been investigated for intra­molecular energy transfer in aromatic ring systems, see: Schael et al. (1998) and for host–guest inter­ations shown by fluoresence studies of dansyl-labelled calix[6]arene, see: Schonefeld et al. (2006). For related structures, see: Illos et al. (2005); Hongmei et al. (2009); Hong-Wei et al. (2009); Chui et al. (2010).graphic file with name e-67-o2458-scheme1.jpg

Experimental

Crystal data

  • C19H20N2O2S

  • M r = 340.43

  • Monoclinic, Inline graphic

  • a = 16.6635 (5) Å

  • b = 9.5722 (2) Å

  • c = 22.8942 (7) Å

  • β = 108.779 (1)°

  • V = 3457.38 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.30 × 0.24 × 0.22 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 4275 measured reflections

  • 4275 independent reflections

  • 3747 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.096

  • S = 1.03

  • 4275 reflections

  • 223 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033083/hg5080sup1.cif

e-67-o2458-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033083/hg5080Isup2.hkl

e-67-o2458-Isup2.hkl (209.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033083/hg5080Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 (2) 2.12 (2) 2.9351 (14) 158 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors wish to thank Dr Hong Su from the University of the Cape Town for her assistance with the data collection and refinement.

supplementary crystallographic information

Comment

Dansyl fluorescent analogs have been reported as insecticides and synergists (Himel et al.,1971). Dansyl probes have also been covalently incorporated into a variety of polymeric networks (Shea et al.,1989). Dansyl chromophoric compounds were investigated for intramolecular energy transfer in aromatic ring systems (Schael et al.,1998). Dansyl labelled calix[6]arene are reported to show host–guest interations using fluoresence studies (Schonefeld et al., 2006).

The title compound is a novel benzylated dansyl derivative (Fig. 1.).

There are a number of examples in literature where amino-sulfonamides dansyl structures have shown intermolecular hydrogen bonding. These arrangments can be described in two broad categories. First, where hydrogen bonds occur between the sulfonyl oxygen and the nitrogen of two adjacent molecules in a alternating chain arrangement (Hongmei et al., 2009, Chui et al.,2010). Second, where they interact with an adjacent molecule in a head to tail manner, (Illos et al., 2005, Hong-Wei et al., 2009). Our system falls into the latter category. Our structure thus displays N1—H1···O2, 2.9351 (14) Å intermolecular hydrogen bonding, generating inversion dimers (Fig. 2). There is no π–π stacking in the crystal.

Experimental

To a dry THF 5 ml benzyl amine (107 mg, 1 mM) was added triethyl amine (303 mg, 3 mM). Dansyl chloride (269 mg, 1 mM) was then added and the resulting solution was stirred until the reaction was completed (TLC Rf = 0.27 in 60% ethyl acetate/hexane). The reaction contents were filtered. The filtrate was evaporated under reduced pressure yielding a yellow oil. To this residue was added 20 ml of dichloromethane and then the organic layer was washed with water and then separated. After drying over anhydrous magnesium sulfate the solvent was evaporated once again under reduced pressure to yield a yellow crystalline solid (240 mg, 71%). M.p. = 408 K.

Crystals suitable for X-ray analysis were grown in ethyl acetate/hexane at room temperature.

Refinement

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except H1 on N1, were placed in idealized positions in a riding model and refined with Uiso set at 1.2 or 1.5 times those of their parent atoms. The position of H1 was located in the difference electron density map and refined with bond length constraint d(N—H) = 0.88 (2) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atomic numbering scheme. The H atoms have been omitted for clarity. Displacement elipsoids are drawn at 40% probability.

Fig. 2.

Fig. 2.

The hydrogen bonding interactions of the title compound along the [110] axis. All H atoms except those involved in hydrogen bonding interactions have been omitted for clarity.

Crystal data

C19H20N2O2S F(000) = 1440
Mr = 340.43 Dx = 1.308 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4275 reflections
a = 16.6635 (5) Å θ = 2.5–28.3°
b = 9.5722 (2) Å µ = 0.20 mm1
c = 22.8942 (7) Å T = 173 K
β = 108.779 (1)° Block, colourless
V = 3457.38 (16) Å3 0.30 × 0.24 × 0.22 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer 3747 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.000
graphite θmax = 28.3°, θmin = 2.5°
1.2° φ scans and ω scans h = 0→22
4275 measured reflections k = 0→12
4275 independent reflections l = −30→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0451P)2 + 3.0274P] where P = (Fo2 + 2Fc2)/3
4275 reflections (Δ/σ)max < 0.001
223 parameters Δρmax = 0.37 e Å3
1 restraint Δρmin = −0.40 e Å3

Special details

Experimental. Half sphere of data collected using COLLECT strategy (Nonius, 2000). Crystal to detector distance = 40 mm; combination of φ and ω scans of 1.0°, 60 s per °, 2 iterations.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20046 (2) 0.47743 (3) 0.473136 (13) 0.02444 (9)
O1 0.18380 (7) 0.60223 (10) 0.50185 (4) 0.0342 (2)
O2 0.16204 (6) 0.34869 (10) 0.48342 (4) 0.0307 (2)
N1 0.30155 (7) 0.45093 (11) 0.49739 (5) 0.0276 (2)
H1 0.3140 (12) 0.3655 (16) 0.4932 (8) 0.050 (5)*
N2 0.12696 (7) 0.39094 (13) 0.17747 (5) 0.0300 (2)
C1 0.43601 (8) 0.58023 (13) 0.54635 (6) 0.0268 (3)
C2 0.49467 (9) 0.68229 (15) 0.54407 (7) 0.0348 (3)
H2 0.4855 0.7356 0.5075 0.042*
C3 0.56607 (9) 0.70685 (17) 0.59432 (8) 0.0424 (4)
H3 0.6051 0.7775 0.5924 0.051*
C4 0.58056 (10) 0.62813 (18) 0.64761 (8) 0.0435 (4)
H4 0.6299 0.6438 0.6820 0.052*
C5 0.52285 (10) 0.52681 (18) 0.65038 (7) 0.0426 (4)
H5 0.5326 0.4730 0.6869 0.051*
C6 0.45021 (9) 0.50297 (15) 0.59985 (7) 0.0348 (3)
H6 0.4106 0.4337 0.6022 0.042*
C7 0.35869 (8) 0.56091 (13) 0.49002 (6) 0.0286 (3)
H7A 0.3271 0.6502 0.4809 0.034*
H7B 0.3774 0.5378 0.4543 0.034*
C8 0.16952 (7) 0.51250 (12) 0.39278 (5) 0.0221 (2)
C9 0.14023 (8) 0.64467 (13) 0.37456 (6) 0.0262 (2)
H9 0.1360 0.7110 0.4043 0.031*
C10 0.11642 (8) 0.68209 (13) 0.31179 (6) 0.0286 (3)
H10 0.0963 0.7738 0.2993 0.034*
C11 0.12215 (8) 0.58726 (13) 0.26895 (6) 0.0263 (3)
H11 0.1070 0.6146 0.2269 0.032*
C12 0.15032 (7) 0.44820 (13) 0.28577 (5) 0.0226 (2)
C13 0.15527 (7) 0.34835 (14) 0.24015 (5) 0.0250 (2)
C14 0.18974 (8) 0.21871 (14) 0.25901 (6) 0.0295 (3)
H14 0.1961 0.1540 0.2293 0.035*
C15 0.21569 (8) 0.18099 (14) 0.32193 (6) 0.0301 (3)
H15 0.2390 0.0908 0.3339 0.036*
C16 0.20798 (8) 0.27152 (13) 0.36610 (6) 0.0261 (2)
H16 0.2239 0.2427 0.4080 0.031*
C17 0.17616 (7) 0.40859 (12) 0.34938 (5) 0.0217 (2)
C18 0.03465 (9) 0.40632 (18) 0.15059 (7) 0.0391 (3)
H18A 0.0086 0.3139 0.1402 0.059*
H18B 0.0214 0.4634 0.1132 0.059*
H18C 0.0124 0.4519 0.1805 0.059*
C19 0.16041 (11) 0.31121 (19) 0.13632 (7) 0.0440 (4)
H19A 0.2222 0.3041 0.1543 0.066*
H19B 0.1460 0.3585 0.0963 0.066*
H19C 0.1356 0.2174 0.1306 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03185 (16) 0.02196 (15) 0.01989 (15) 0.00216 (11) 0.00886 (11) 0.00062 (10)
O1 0.0511 (6) 0.0282 (5) 0.0261 (5) 0.0076 (4) 0.0164 (4) −0.0023 (4)
O2 0.0370 (5) 0.0270 (5) 0.0301 (5) −0.0001 (4) 0.0139 (4) 0.0051 (4)
N1 0.0310 (5) 0.0205 (5) 0.0262 (5) 0.0004 (4) 0.0021 (4) 0.0006 (4)
N2 0.0290 (5) 0.0407 (6) 0.0206 (5) 0.0027 (5) 0.0082 (4) −0.0020 (4)
C1 0.0280 (6) 0.0226 (6) 0.0286 (6) 0.0030 (5) 0.0076 (5) −0.0041 (5)
C2 0.0314 (7) 0.0320 (7) 0.0420 (8) 0.0005 (5) 0.0130 (6) −0.0016 (6)
C3 0.0302 (7) 0.0378 (8) 0.0578 (10) −0.0039 (6) 0.0122 (7) −0.0103 (7)
C4 0.0307 (7) 0.0461 (9) 0.0453 (9) 0.0016 (6) 0.0003 (6) −0.0161 (7)
C5 0.0422 (8) 0.0462 (9) 0.0314 (7) 0.0025 (7) 0.0006 (6) −0.0014 (6)
C6 0.0356 (7) 0.0328 (7) 0.0310 (7) −0.0022 (6) 0.0039 (6) 0.0001 (5)
C7 0.0338 (6) 0.0233 (6) 0.0262 (6) −0.0009 (5) 0.0063 (5) 0.0012 (5)
C8 0.0232 (5) 0.0235 (6) 0.0197 (5) 0.0009 (4) 0.0068 (4) 0.0004 (4)
C9 0.0303 (6) 0.0235 (6) 0.0259 (6) 0.0029 (5) 0.0106 (5) −0.0003 (5)
C10 0.0317 (6) 0.0243 (6) 0.0290 (6) 0.0056 (5) 0.0086 (5) 0.0048 (5)
C11 0.0267 (6) 0.0293 (6) 0.0222 (5) 0.0013 (5) 0.0068 (5) 0.0047 (5)
C12 0.0198 (5) 0.0263 (6) 0.0221 (5) 0.0002 (4) 0.0073 (4) 0.0000 (4)
C13 0.0211 (5) 0.0317 (6) 0.0227 (5) −0.0004 (5) 0.0076 (4) −0.0027 (5)
C14 0.0296 (6) 0.0301 (7) 0.0288 (6) 0.0025 (5) 0.0093 (5) −0.0078 (5)
C15 0.0310 (6) 0.0237 (6) 0.0332 (7) 0.0049 (5) 0.0068 (5) −0.0023 (5)
C16 0.0270 (6) 0.0240 (6) 0.0252 (6) 0.0018 (5) 0.0055 (5) 0.0003 (5)
C17 0.0193 (5) 0.0232 (6) 0.0224 (5) −0.0002 (4) 0.0064 (4) −0.0007 (4)
C18 0.0320 (7) 0.0515 (9) 0.0283 (7) 0.0022 (6) 0.0020 (5) −0.0016 (6)
C19 0.0523 (9) 0.0567 (10) 0.0288 (7) 0.0067 (8) 0.0212 (7) −0.0047 (7)

Geometric parameters (Å, °)

S1—O1 1.4331 (9) C8—C9 1.3718 (17)
S1—O2 1.4425 (9) C8—C17 1.4351 (16)
S1—N1 1.6150 (11) C9—C10 1.4084 (17)
S1—C8 1.7754 (12) C9—H9 0.9500
N1—C7 1.4651 (17) C10—C11 1.3622 (18)
N1—H1 0.857 (14) C10—H10 0.9500
N2—C13 1.4184 (16) C11—C12 1.4227 (17)
N2—C19 1.4558 (17) C11—H11 0.9500
N2—C18 1.4687 (17) C12—C17 1.4306 (16)
C1—C6 1.3843 (19) C12—C13 1.4375 (16)
C1—C2 1.3948 (19) C13—C14 1.3771 (19)
C1—C7 1.5125 (17) C14—C15 1.4113 (18)
C2—C3 1.383 (2) C14—H14 0.9500
C2—H2 0.9500 C15—C16 1.3687 (18)
C3—C4 1.387 (2) C15—H15 0.9500
C3—H3 0.9500 C16—C17 1.4207 (17)
C4—C5 1.382 (2) C16—H16 0.9500
C4—H4 0.9500 C18—H18A 0.9800
C5—C6 1.398 (2) C18—H18B 0.9800
C5—H5 0.9500 C18—H18C 0.9800
C6—H6 0.9500 C19—H19A 0.9800
C7—H7A 0.9900 C19—H19B 0.9800
C7—H7B 0.9900 C19—H19C 0.9800
O1—S1—O2 118.40 (6) C8—C9—C10 120.04 (11)
O1—S1—N1 107.93 (6) C8—C9—H9 120.0
O2—S1—N1 106.16 (6) C10—C9—H9 120.0
O1—S1—C8 106.45 (6) C11—C10—C9 120.21 (12)
O2—S1—C8 109.54 (6) C11—C10—H10 119.9
N1—S1—C8 107.99 (6) C9—C10—H10 119.9
C7—N1—S1 119.48 (9) C10—C11—C12 121.47 (11)
C7—N1—H1 118.9 (13) C10—C11—H11 119.3
S1—N1—H1 112.0 (13) C12—C11—H11 119.3
C13—N2—C19 115.60 (11) C11—C12—C17 119.24 (11)
C13—N2—C18 114.53 (11) C11—C12—C13 121.10 (11)
C19—N2—C18 110.42 (11) C17—C12—C13 119.64 (11)
C6—C1—C2 119.02 (13) C14—C13—N2 123.05 (11)
C6—C1—C7 123.03 (12) C14—C13—C12 119.15 (11)
C2—C1—C7 117.94 (12) N2—C13—C12 117.75 (11)
C3—C2—C1 120.89 (14) C13—C14—C15 120.69 (11)
C3—C2—H2 119.6 C13—C14—H14 119.7
C1—C2—H2 119.6 C15—C14—H14 119.7
C2—C3—C4 119.91 (14) C16—C15—C14 121.42 (12)
C2—C3—H3 120.0 C16—C15—H15 119.3
C4—C3—H3 120.0 C14—C15—H15 119.3
C5—C4—C3 119.67 (14) C15—C16—C17 120.09 (11)
C5—C4—H4 120.2 C15—C16—H16 120.0
C3—C4—H4 120.2 C17—C16—H16 120.0
C4—C5—C6 120.44 (15) C16—C17—C12 118.87 (11)
C4—C5—H5 119.8 C16—C17—C8 123.98 (11)
C6—C5—H5 119.8 C12—C17—C8 117.14 (11)
C1—C6—C5 120.06 (14) N2—C18—H18A 109.5
C1—C6—H6 120.0 N2—C18—H18B 109.5
C5—C6—H6 120.0 H18A—C18—H18B 109.5
N1—C7—C1 113.36 (10) N2—C18—H18C 109.5
N1—C7—H7A 108.9 H18A—C18—H18C 109.5
C1—C7—H7A 108.9 H18B—C18—H18C 109.5
N1—C7—H7B 108.9 N2—C19—H19A 109.5
C1—C7—H7B 108.9 N2—C19—H19B 109.5
H7A—C7—H7B 107.7 H19A—C19—H19B 109.5
C9—C8—C17 121.86 (11) N2—C19—H19C 109.5
C9—C8—S1 116.47 (9) H19A—C19—H19C 109.5
C17—C8—S1 121.66 (9) H19B—C19—H19C 109.5
O1—S1—N1—C7 −55.53 (11) C10—C11—C12—C17 −2.33 (18)
O2—S1—N1—C7 176.58 (9) C10—C11—C12—C13 179.29 (11)
C8—S1—N1—C7 59.17 (11) C19—N2—C13—C14 −19.34 (19)
C6—C1—C2—C3 −0.1 (2) C18—N2—C13—C14 110.75 (14)
C7—C1—C2—C3 178.98 (13) C19—N2—C13—C12 158.21 (12)
C1—C2—C3—C4 0.8 (2) C18—N2—C13—C12 −71.70 (15)
C2—C3—C4—C5 −0.9 (2) C11—C12—C13—C14 174.43 (12)
C3—C4—C5—C6 0.2 (2) C17—C12—C13—C14 −3.94 (17)
C2—C1—C6—C5 −0.6 (2) C11—C12—C13—N2 −3.22 (17)
C7—C1—C6—C5 −179.62 (13) C17—C12—C13—N2 178.41 (10)
C4—C5—C6—C1 0.5 (2) N2—C13—C14—C15 −179.01 (12)
S1—N1—C7—C1 137.24 (10) C12—C13—C14—C15 3.47 (19)
C6—C1—C7—N1 −1.11 (18) C13—C14—C15—C16 −0.4 (2)
C2—C1—C7—N1 179.83 (11) C14—C15—C16—C17 −2.3 (2)
O1—S1—C8—C9 2.04 (12) C15—C16—C17—C12 1.77 (18)
O2—S1—C8—C9 131.16 (10) C15—C16—C17—C8 −177.02 (12)
N1—S1—C8—C9 −113.64 (10) C11—C12—C17—C16 −177.06 (11)
O1—S1—C8—C17 −178.94 (10) C13—C12—C17—C16 1.34 (16)
O2—S1—C8—C17 −49.82 (11) C11—C12—C17—C8 1.81 (16)
N1—S1—C8—C17 65.38 (11) C13—C12—C17—C8 −179.79 (10)
C17—C8—C9—C10 −0.62 (19) C9—C8—C17—C16 178.42 (12)
S1—C8—C9—C10 178.40 (10) S1—C8—C17—C16 −0.55 (16)
C8—C9—C10—C11 0.16 (19) C9—C8—C17—C12 −0.39 (17)
C9—C10—C11—C12 1.33 (19) S1—C8—C17—C12 −179.35 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 (2) 2.12 (2) 2.9351 (14) 158.(2)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5080).

References

  1. Chui, C. H., Wang, Q., Chow, W. C., Yuen, M. C. W., Wong, K. L., Kwok, W. M., Cheng, G. Y. M., Wong, R. S. M., Tong, S. W., Chan, K. W., Lau, F. Y., Lai, P. B. S., Lam, K. H., Fabbri, E., Tao, X. M., Gambari, R. & Wong, W. Y. (2010). Chem. Commun. 46, 3538–3540. [DOI] [PubMed]
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Himel, C. M., Wissam, A. G. & Solang, U. K. (1971). J. Agric. Food Chem. 19, 1175–1180.
  4. Hongmei, W., Peng, Z., Jian, W., Liang, Z. & Chunying, D. (2009). New J. Chem. 33, 653–658.
  5. Hong-Wei, L., Yue, L., Yong-Qiang, D., Li-Jun, M., Guangfeng, H. & Lixin, W. (2009). Chem. Commun. pp. 4453–4455.
  6. Illos, R. A., Ergaz, I. & Bittner, S. (2005). Z. Kristallogr. 220, 285–286.
  7. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Schael, F., Rubin, M. B. & Speiser, S. (1998). J. Photochem. Photobiol. A, 115, 99–108.
  10. Schonefeld, K., Ludwig, R. & Feller, K. H. (2006). J. Fluoresc. 16, 449–454. [DOI] [PubMed]
  11. Shea, K. J., Stoddard, G. J. & Sasaki, D. Y. (1989). Macromolecules, 22, 4303–4308.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033083/hg5080sup1.cif

e-67-o2458-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033083/hg5080Isup2.hkl

e-67-o2458-Isup2.hkl (209.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033083/hg5080Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES