Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2292. doi: 10.1107/S1600536811031369

6-(4-Chloro­phen­yl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-carbaldehyde

Peter R W E F Keck a, Dieter Schollmeyer b, Stefan Laufer a,*
PMCID: PMC3200804  PMID: 22058932

Abstract

The 4-chloro­phenyl residue in the title compound, C20H16ClNO, is oriented at a dihedral angle of 53.6 (3)° towards the phenyl ring and 42.0 (9)° towards the pyrrole ring of the pyrrolizine template. The phenyl ring is oriented at a dihedral angle of 45.4 (4)° towards the pyrrole ring.

Related literature

For the biological activity of aryl­pyrrolizines as mPGES-1 inhibitors, see: Liedtke et al. (2009). For dual COX/LOX inhibitors, see: Laufer (2001a ,b ).graphic file with name e-67-o2292-scheme1.jpg

Experimental

Crystal data

  • C20H16ClNO

  • M r = 321.79

  • Monoclinic, Inline graphic

  • a = 21.1526 (13) Å

  • b = 11.5723 (9) Å

  • c = 17.1484 (12) Å

  • β = 130.843 (4)°

  • V = 3175.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 193 K

  • 0.34 × 0.31 × 0.05 mm

Data collection

  • Stoe IPDS 2T diffractometer

  • 9492 measured reflections

  • 3804 independent reflections

  • 2633 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.117

  • S = 1.02

  • 3804 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: X-AREA (Stoe & Cie, 2010); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031369/bt5600sup1.cif

e-67-o2292-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031369/bt5600Isup2.hkl

e-67-o2292-Isup2.hkl (186.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031369/bt5600Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Based on ML3000 (Laufer et al., 2001a,b) as dual COX/LOX inhibitor, we synthesized and evaluated inhibitors for the microsomal prostaglandin E2 synthase-1 (mPGES-1) (Liedtke et al., 2009). The title compound was synthesized to obtain a template with a reactive group in position 5 of the pyrrolizine moiety which lead to series of differend derivates of the arylpyrrolizine scaffold.

Towards the unsaturated and planar part of the pyrrolizine residue the 4-chlorophenyl residue is oriented at a dihedral angle of 42.0 (9)° and the plain phenyl ring is oriented at a dihedral angle of 45.4 (4)°. The two phenyl rings are oriented at a dihedral angle of 53.6 (3)° and both centromers show a distance of 5.07 (6) Å. The distance between the para C atoms of the rings (C13, C20) is 6.85 (0) Å.

Experimental

The compound was prepared by Vilsmeyer reaction. Phosphoryl chloride (0.484 ml, 5.31 mmol) is added dropwise to ice-cooled solution of 1.18 ml dimethylformamide and 6-(4-chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine (1.5 g, 5.11 mmol); the temperature is kept under 293 K during the addition. Then the mixture is stirred for 1 h at room temperature. Finally the mixture is heated to 333 K for 1 h. The mixture was cooled to 273 K, quenched by water and adjusted to pH 6 with aqueous sodium hydroxide solution 10%.

The product was collected as precipitated solid by filtration, was dissolved in dichloromethane and washed with water three times and finally dried over anhydrous sodium sulfate. The product was concentrated under vacuum and precipitated out of diisopropylic ether to yield 1.13 g (69%). Crystals of the title compound were obtained by slow evaporation of ethanol at room temperature.

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.99–1.00 Å (sp3 C-atom). All H atoms were refined with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

View of compound I. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C20H16ClNO F(000) = 1344
Mr = 321.79 Dx = 1.346 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6848 reflections
a = 21.1526 (13) Å θ = 2.5–29.7°
b = 11.5723 (9) Å µ = 0.24 mm1
c = 17.1484 (12) Å T = 193 K
β = 130.843 (4)° Plate, colourless
V = 3175.5 (4) Å3 0.34 × 0.31 × 0.05 mm
Z = 8

Data collection

Stoe IPDS 2T diffractometer 2633 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Rint = 0.036
graphite θmax = 28.0°, θmin = 2.6°
Detector resolution: 6.67 pixels mm-1 h = −27→27
rotation method scans k = −15→13
9492 measured reflections l = −22→16
3804 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.4776P] where P = (Fo2 + 2Fc2)/3
3804 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.62354 (11) 0.11928 (15) 0.31943 (15) 0.0441 (4)
H1A 0.5719 0.0923 0.3037 0.053*
H1B 0.6721 0.0780 0.3810 0.053*
C2 0.61862 (13) 0.10249 (16) 0.22614 (16) 0.0510 (4)
H2A 0.6461 0.0294 0.2326 0.061*
H2B 0.5597 0.1007 0.1610 0.061*
C3 0.66451 (11) 0.20673 (16) 0.22833 (15) 0.0451 (4)
H3A 0.7241 0.1889 0.2663 0.054*
H3B 0.6379 0.2328 0.1578 0.054*
N4 0.65521 (8) 0.29317 (12) 0.28297 (10) 0.0375 (3)
C5 0.66339 (10) 0.41119 (14) 0.29645 (12) 0.0369 (3)
C6 0.64365 (9) 0.43919 (13) 0.35826 (12) 0.0351 (3)
C7 0.62553 (9) 0.33471 (14) 0.38334 (12) 0.0349 (3)
C7A 0.63337 (9) 0.24695 (14) 0.33439 (12) 0.0367 (3)
C8 0.69420 (10) 0.48273 (16) 0.25951 (13) 0.0423 (4)
H8 0.7003 0.5629 0.2748 0.051*
O9 0.71332 (9) 0.44865 (13) 0.20975 (11) 0.0543 (3)
C10 0.64265 (9) 0.55686 (14) 0.39052 (12) 0.0349 (3)
C11 0.60820 (10) 0.64988 (15) 0.32190 (13) 0.0411 (4)
H11 0.5853 0.6372 0.2530 0.049*
C12 0.60672 (11) 0.75998 (15) 0.35203 (14) 0.0435 (4)
H12 0.5839 0.8225 0.3047 0.052*
C13 0.63874 (10) 0.77793 (14) 0.45162 (14) 0.0401 (4)
C14 0.67412 (10) 0.68840 (14) 0.52186 (13) 0.0387 (3)
H14 0.6972 0.7020 0.5907 0.046*
C15 0.67564 (9) 0.57881 (14) 0.49104 (12) 0.0361 (3)
H15 0.6996 0.5171 0.5393 0.043*
Cl16 0.63185 (3) 0.91463 (4) 0.48838 (4) 0.05391 (15)
C17 0.59919 (9) 0.31301 (13) 0.44330 (12) 0.0343 (3)
C18 0.53753 (10) 0.37916 (15) 0.42983 (14) 0.0408 (4)
H18 0.5134 0.4426 0.3834 0.049*
C19 0.51117 (11) 0.35325 (16) 0.48348 (15) 0.0460 (4)
H19 0.4690 0.3988 0.4734 0.055*
C20 0.54598 (11) 0.26142 (17) 0.55167 (14) 0.0483 (4)
H20 0.5276 0.2435 0.5882 0.058*
C21 0.60775 (12) 0.19570 (17) 0.56642 (14) 0.0486 (4)
H21 0.6321 0.1328 0.6135 0.058*
C22 0.63404 (11) 0.22143 (15) 0.51282 (13) 0.0416 (4)
H22 0.6765 0.1759 0.5236 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0489 (9) 0.0362 (9) 0.0538 (10) 0.0032 (7) 0.0364 (8) −0.0003 (7)
C2 0.0619 (11) 0.0429 (10) 0.0578 (11) −0.0025 (8) 0.0434 (10) −0.0094 (8)
C3 0.0520 (9) 0.0457 (9) 0.0490 (9) −0.0016 (7) 0.0379 (8) −0.0100 (8)
N4 0.0421 (7) 0.0388 (7) 0.0386 (7) 0.0002 (5) 0.0294 (6) −0.0017 (6)
C5 0.0390 (7) 0.0386 (8) 0.0354 (8) −0.0016 (6) 0.0254 (7) −0.0023 (6)
C6 0.0361 (7) 0.0365 (8) 0.0337 (7) 0.0008 (6) 0.0232 (6) −0.0010 (6)
C7 0.0355 (7) 0.0354 (8) 0.0354 (7) 0.0023 (6) 0.0239 (6) 0.0016 (6)
C7A 0.0386 (7) 0.0361 (8) 0.0396 (8) 0.0031 (6) 0.0274 (7) 0.0012 (7)
C8 0.0471 (8) 0.0455 (9) 0.0397 (8) −0.0059 (7) 0.0308 (8) −0.0039 (7)
O9 0.0679 (8) 0.0623 (9) 0.0545 (8) −0.0101 (7) 0.0496 (7) −0.0086 (6)
C10 0.0359 (7) 0.0352 (8) 0.0369 (8) −0.0004 (6) 0.0253 (7) 0.0003 (6)
C11 0.0477 (8) 0.0389 (9) 0.0371 (8) −0.0003 (7) 0.0279 (7) 0.0021 (7)
C12 0.0500 (9) 0.0348 (8) 0.0458 (9) 0.0020 (7) 0.0313 (8) 0.0062 (7)
C13 0.0452 (8) 0.0330 (8) 0.0518 (9) −0.0034 (6) 0.0360 (8) −0.0027 (7)
C14 0.0449 (8) 0.0397 (8) 0.0414 (8) −0.0012 (7) 0.0325 (7) −0.0022 (7)
C15 0.0403 (8) 0.0372 (8) 0.0372 (8) 0.0031 (6) 0.0281 (7) 0.0032 (6)
Cl16 0.0722 (3) 0.0334 (2) 0.0704 (3) −0.00204 (19) 0.0529 (3) −0.0052 (2)
C17 0.0361 (7) 0.0326 (8) 0.0366 (8) −0.0022 (6) 0.0248 (7) −0.0015 (6)
C18 0.0424 (8) 0.0369 (8) 0.0482 (9) 0.0026 (6) 0.0319 (8) 0.0024 (7)
C19 0.0486 (9) 0.0449 (9) 0.0595 (10) −0.0057 (7) 0.0420 (9) −0.0083 (8)
C20 0.0591 (10) 0.0515 (10) 0.0512 (10) −0.0127 (8) 0.0434 (9) −0.0072 (8)
C21 0.0592 (10) 0.0454 (10) 0.0467 (9) −0.0022 (8) 0.0370 (9) 0.0062 (8)
C22 0.0452 (8) 0.0403 (9) 0.0427 (8) 0.0030 (7) 0.0302 (7) 0.0035 (7)

Geometric parameters (Å, °)

C1—C7A 1.491 (2) C10—C11 1.397 (2)
C1—C2 1.546 (3) C11—C12 1.383 (2)
C1—H1A 0.9900 C11—H11 0.9500
C1—H1B 0.9900 C12—C13 1.380 (3)
C2—C3 1.533 (3) C12—H12 0.9500
C2—H2A 0.9900 C13—C14 1.380 (2)
C2—H2B 0.9900 C13—Cl16 1.7440 (17)
C3—N4 1.469 (2) C14—C15 1.382 (2)
C3—H3A 0.9900 C14—H14 0.9500
C3—H3B 0.9900 C15—H15 0.9500
N4—C7A 1.345 (2) C17—C22 1.392 (2)
N4—C5 1.377 (2) C17—C18 1.395 (2)
C5—C6 1.408 (2) C18—C19 1.385 (2)
C5—C8 1.432 (2) C18—H18 0.9500
C6—C7 1.417 (2) C19—C20 1.383 (3)
C6—C10 1.475 (2) C19—H19 0.9500
C7—C7A 1.395 (2) C20—C21 1.385 (3)
C7—C17 1.476 (2) C20—H20 0.9500
C8—O9 1.224 (2) C21—C22 1.383 (3)
C8—H8 0.9500 C21—H21 0.9500
C10—C15 1.396 (2) C22—H22 0.9500
C7A—C1—C2 102.13 (15) C15—C10—C11 117.63 (15)
C7A—C1—H1A 111.3 C15—C10—C6 120.84 (14)
C2—C1—H1A 111.3 C11—C10—C6 121.52 (15)
C7A—C1—H1B 111.3 C12—C11—C10 121.46 (16)
C2—C1—H1B 111.3 C12—C11—H11 119.3
H1A—C1—H1B 109.2 C10—C11—H11 119.3
C3—C2—C1 105.23 (14) C13—C12—C11 119.22 (16)
C3—C2—H2A 110.7 C13—C12—H12 120.4
C1—C2—H2A 110.7 C11—C12—H12 120.4
C3—C2—H2B 110.7 C12—C13—C14 120.94 (16)
C1—C2—H2B 110.7 C12—C13—Cl16 119.62 (14)
H2A—C2—H2B 108.8 C14—C13—Cl16 119.42 (13)
N4—C3—C2 101.81 (13) C13—C14—C15 119.33 (15)
N4—C3—H3A 111.4 C13—C14—H14 120.3
C2—C3—H3A 111.4 C15—C14—H14 120.3
N4—C3—H3B 111.4 C14—C15—C10 121.41 (15)
C2—C3—H3B 111.4 C14—C15—H15 119.3
H3A—C3—H3B 109.3 C10—C15—H15 119.3
C7A—N4—C5 110.10 (14) C22—C17—C18 118.26 (15)
C7A—N4—C3 113.20 (14) C22—C17—C7 119.75 (14)
C5—N4—C3 136.70 (15) C18—C17—C7 121.94 (15)
N4—C5—C6 106.74 (14) C19—C18—C17 120.67 (16)
N4—C5—C8 122.86 (15) C19—C18—H18 119.7
C6—C5—C8 130.15 (16) C17—C18—H18 119.7
C5—C6—C7 107.71 (14) C20—C19—C18 120.32 (16)
C5—C6—C10 125.36 (15) C20—C19—H19 119.8
C7—C6—C10 126.92 (14) C18—C19—H19 119.8
C7A—C7—C6 106.05 (14) C19—C20—C21 119.58 (16)
C7A—C7—C17 122.87 (14) C19—C20—H20 120.2
C6—C7—C17 131.02 (14) C21—C20—H20 120.2
N4—C7A—C7 109.39 (14) C22—C21—C20 120.13 (17)
N4—C7A—C1 110.50 (14) C22—C21—H21 119.9
C7—C7A—C1 140.10 (16) C20—C21—H21 119.9
O9—C8—C5 125.12 (17) C21—C22—C17 121.02 (16)
O9—C8—H8 117.4 C21—C22—H22 119.5
C5—C8—H8 117.4 C17—C22—H22 119.5
C7A—C1—C2—C3 25.15 (18) C6—C5—C8—O9 176.32 (17)
C1—C2—C3—N4 −25.45 (18) C5—C6—C10—C15 −137.95 (16)
C2—C3—N4—C7A 16.96 (19) C7—C6—C10—C15 41.8 (2)
C2—C3—N4—C5 −163.46 (18) C5—C6—C10—C11 42.7 (2)
C7A—N4—C5—C6 −1.26 (18) C7—C6—C10—C11 −137.55 (17)
C3—N4—C5—C6 179.14 (17) C15—C10—C11—C12 0.1 (2)
C7A—N4—C5—C8 173.57 (15) C6—C10—C11—C12 179.48 (15)
C3—N4—C5—C8 −6.0 (3) C10—C11—C12—C13 −1.1 (3)
N4—C5—C6—C7 1.41 (17) C11—C12—C13—C14 1.8 (3)
C8—C5—C6—C7 −172.90 (16) C11—C12—C13—Cl16 −176.36 (13)
N4—C5—C6—C10 −178.77 (14) C12—C13—C14—C15 −1.5 (2)
C8—C5—C6—C10 6.9 (3) Cl16—C13—C14—C15 176.68 (12)
C5—C6—C7—C7A −1.06 (17) C13—C14—C15—C10 0.4 (2)
C10—C6—C7—C7A 179.13 (14) C11—C10—C15—C14 0.2 (2)
C5—C6—C7—C17 −178.20 (15) C6—C10—C15—C14 −179.16 (14)
C10—C6—C7—C17 2.0 (3) C7A—C7—C17—C22 45.3 (2)
C5—N4—C7A—C7 0.60 (18) C6—C7—C17—C22 −137.98 (18)
C3—N4—C7A—C7 −179.70 (13) C7A—C7—C17—C18 −132.22 (17)
C5—N4—C7A—C1 179.45 (13) C6—C7—C17—C18 44.5 (2)
C3—N4—C7A—C1 −0.85 (19) C22—C17—C18—C19 −0.7 (2)
C6—C7—C7A—N4 0.30 (17) C7—C17—C18—C19 176.81 (15)
C17—C7—C7A—N4 177.73 (14) C17—C18—C19—C20 0.3 (3)
C6—C7—C7A—C1 −178.0 (2) C18—C19—C20—C21 0.3 (3)
C17—C7—C7A—C1 −0.6 (3) C19—C20—C21—C22 −0.4 (3)
C2—C1—C7A—N4 −15.54 (18) C20—C21—C22—C17 −0.1 (3)
C2—C1—C7A—C7 162.8 (2) C18—C17—C22—C21 0.7 (3)
N4—C5—C8—O9 2.8 (3) C7—C17—C22—C21 −176.92 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5600).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Laufer, S. (2001a). Inflammopharmacology, 9, 101–112.
  3. Laufer, S. (2001b). Inflammopharmacology, 9, 113–124.
  4. Liedtke, A. J., Keck, P. R. W. E. F., Lehmann, F., Koeberle, A., Werz, O. & Laufer, S. (2009). J. Med. Chem. 52, 4968–4972. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Stoe & Cie (2010). X-AREA and X-RED Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031369/bt5600sup1.cif

e-67-o2292-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031369/bt5600Isup2.hkl

e-67-o2292-Isup2.hkl (186.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031369/bt5600Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES