Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2404. doi: 10.1107/S1600536811033642

4′-(4-Chlorophenyl)-1′-methyldispiro[indan-2,2′-pyrrolidine-3′,2′′-indan]-1,3,1′′-trione

Ang Chee Wei a, Mohamed Ashraf Ali a, Yeong Keng Yoon a, Ching Kheng Quah b,, Hoong-Kun Fun b,*,§
PMCID: PMC3200810  PMID: 22064509

Abstract

In the title compound, C27H20ClNO3, the two cyclo­pentane rings adopt envelope conformations. The pyrrolidine ring also adopts an envelope conformation (with the spiro C atom as the flap) and its least-squares plane (fitted to five atoms) makes dihedral angles of 66.50 (9), 77.36 (8) and 73.76 (8)° with the chloro­benzene ring and the two 2,3-dihydro-1H-indene ring systems, respectively. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains running parallel to the [001] direction.

Related literature

For background to the synthesis, see: Amalraj & Raghunathan (2003). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For graph-set descriptors of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Kumar et al. (2010); Wei, Ali, Choon et al. (2011); Wei, Ali, Ismail et al. (2011). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-67-o2404-scheme1.jpg

Experimental

Crystal data

  • C27H20ClNO3

  • M r = 441.89

  • Monoclinic, Inline graphic

  • a = 7.8216 (1) Å

  • b = 21.2865 (3) Å

  • c = 14.0641 (2) Å

  • β = 116.156 (1)°

  • V = 2101.81 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.43 × 0.11 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.913, T max = 0.979

  • 25402 measured reflections

  • 6459 independent reflections

  • 4537 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.113

  • S = 1.06

  • 6459 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033642/hb6361sup1.cif

e-67-o2404-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033642/hb6361Isup2.hkl

e-67-o2404-Isup2.hkl (316.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O2 0.99 2.40 3.055 (2) 123
C6—H6A⋯O1i 0.95 2.57 3.244 (2) 128
C14—H14A⋯O3i 0.95 2.45 3.167 (2) 132

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to express their thanks to Universiti Sains Malaysia (USM), Penang, Malaysia, for providing research facilities. HKF and CKQ also thank USM for a Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

1,3-Dipolar cycloaddition is a very useful synthetic strategy to construct heterocycles in which high regio- and stereo-chemical control of peripheral substituents can be achieved (Amalraj & Raghunathan, 2003). As part of our studies in this area, the title compound, (I), was prepared and it structure is now described.

The molecular structure is shown in Fig. 1. The two cyclopentane rings, C1-C3/C8/C9 and C10-C12/C17/C18, are in envelope conformations, puckering parameters (Cremer & Pople, 1975) Q =0.2239 (17) Å and φ = 177.0 (4)° with atom C1 at the flap; and Q = 0.2121 (17) Å and φ = 355.2 (5)° with atom C10 at the flap, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Kumar et al., 2010; Wei, Ali, Choon et al. (2011); Wei, Ali, Ismail et al. (2011). The pyrrolidine ring (N1/C1/C10/C19/C20) adopts an envelope conformation, puckering parameters (Cremer & Pople, 1975) Q = 0.4461 (17) Å and φ = 41.6 (2)°, with atom C1 at the flap and its least-squares plane makes dihedral angles of 66.50 (9), 77.36 (8) and 73.76 (8)° with a phenyl ring (C22-C27) and the two least-squares planes of 2,3-dihydro-1H-indene ring system [C1-C9 (maximum deviation of 0.234 (2) Å at atom C1) and C10-C18 (maximum deviation of 0.221 (2) Å at atom C10)], respectively. The molecular structure is stabilized by an intramolecular C18–H18A···O2 hydrogen bond (Table 1), which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995).

In the crystal (Fig. 2), molecules are linked by C6–H6A···O1 and C14–H14A···O3 hydrogen bonds (Table 1) into one-dimensional chains parallel to [001] direction.

Experimental

A mixture of (E)2-(4-chlorobenzylidene)-2,3-dihydro-1H- indene-1-one (0.001 mmol), ninhydrin (0.001 mmol) and sarcosine (0.002 mmol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered, washed with water and recrystallised from pet.ether-ethyl acetate mixture (1:1) to reveal the title compound as yellow crystals.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.95-1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. The highest residual electron density peak is located at 0.73 Å from atom C10 and the deepest hole is located at 0.49 Å from atom Cl1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C27H20ClNO3 F(000) = 920
Mr = 441.89 Dx = 1.396 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5352 reflections
a = 7.8216 (1) Å θ = 2.5–30.6°
b = 21.2865 (3) Å µ = 0.21 mm1
c = 14.0641 (2) Å T = 100 K
β = 116.156 (1)° Needle, yellow
V = 2101.81 (5) Å3 0.43 × 0.11 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 6459 independent reflections
Radiation source: fine-focus sealed tube 4537 reflections with I > 2σ(I)
graphite Rint = 0.047
φ and ω scans θmax = 30.7°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.913, Tmax = 0.979 k = −28→30
25402 measured reflections l = −20→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.7009P] where P = (Fo2 + 2Fc2)/3
6459 reflections (Δ/σ)max = 0.003
290 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.36538 (5) 1.10023 (2) 0.43329 (4) 0.03235 (12)
O1 0.34773 (16) 0.84249 (6) 0.29205 (9) 0.0267 (3)
O2 0.21665 (15) 0.90315 (5) −0.05015 (9) 0.0238 (2)
O3 0.76083 (16) 0.81058 (5) 0.28215 (9) 0.0259 (3)
N1 0.32278 (17) 0.95682 (6) 0.16129 (10) 0.0186 (3)
C1 0.3793 (2) 0.89484 (7) 0.14450 (12) 0.0174 (3)
C2 0.3456 (2) 0.83915 (7) 0.20561 (12) 0.0192 (3)
C3 0.3038 (2) 0.78302 (7) 0.13665 (12) 0.0195 (3)
C4 0.3012 (2) 0.71988 (8) 0.16125 (13) 0.0226 (3)
H4A 0.3236 0.7071 0.2305 0.027*
C5 0.2648 (2) 0.67623 (8) 0.08182 (14) 0.0248 (3)
H5A 0.2625 0.6328 0.0970 0.030*
C6 0.2312 (2) 0.69460 (8) −0.02046 (13) 0.0247 (3)
H6A 0.2087 0.6636 −0.0732 0.030*
C7 0.2303 (2) 0.75755 (8) −0.04577 (13) 0.0222 (3)
H7A 0.2052 0.7703 −0.1154 0.027*
C8 0.2672 (2) 0.80142 (7) 0.03387 (12) 0.0185 (3)
C9 0.2784 (2) 0.87074 (7) 0.02905 (12) 0.0187 (3)
C10 0.60072 (19) 0.90486 (7) 0.18206 (12) 0.0163 (3)
C11 0.7080 (2) 0.84175 (7) 0.20191 (12) 0.0182 (3)
C12 0.7325 (2) 0.82736 (7) 0.10625 (12) 0.0180 (3)
C13 0.7860 (2) 0.77077 (8) 0.07756 (14) 0.0247 (3)
H13A 0.8190 0.7354 0.1234 0.030*
C14 0.7896 (2) 0.76766 (9) −0.01978 (14) 0.0302 (4)
H14A 0.8221 0.7293 −0.0424 0.036*
C15 0.7456 (2) 0.82058 (9) −0.08488 (14) 0.0300 (4)
H15A 0.7504 0.8178 −0.1511 0.036*
C16 0.6949 (2) 0.87731 (9) −0.05530 (13) 0.0246 (3)
H16A 0.6668 0.9132 −0.0998 0.029*
C17 0.68632 (19) 0.88006 (7) 0.04162 (12) 0.0186 (3)
C18 0.6335 (2) 0.93495 (7) 0.09163 (12) 0.0178 (3)
H18A 0.5164 0.9558 0.0397 0.021*
H18B 0.7379 0.9662 0.1197 0.021*
C19 0.6508 (2) 0.94344 (7) 0.28455 (12) 0.0178 (3)
H19A 0.6749 0.9126 0.3427 0.021*
C20 0.4657 (2) 0.97897 (8) 0.26487 (12) 0.0215 (3)
H20A 0.4259 0.9692 0.3210 0.026*
H20B 0.4843 1.0249 0.2637 0.026*
C21 0.1256 (2) 0.96362 (8) 0.14474 (13) 0.0251 (3)
H21A 0.0396 0.9477 0.0744 0.038*
H21B 0.0983 1.0081 0.1499 0.038*
H21C 0.1069 0.9396 0.1989 0.038*
C22 0.8282 (2) 0.98346 (7) 0.31889 (12) 0.0178 (3)
C23 1.0004 (2) 0.96051 (8) 0.39638 (12) 0.0200 (3)
H23A 1.0037 0.9202 0.4261 0.024*
C24 1.1670 (2) 0.99542 (8) 0.43099 (12) 0.0219 (3)
H24A 1.2835 0.9792 0.4836 0.026*
C25 1.1605 (2) 1.05421 (8) 0.38765 (13) 0.0219 (3)
C26 0.9925 (2) 1.07773 (8) 0.30868 (13) 0.0220 (3)
H26A 0.9903 1.1176 0.2779 0.026*
C27 0.8274 (2) 1.04207 (7) 0.27535 (12) 0.0208 (3)
H27A 0.7117 1.0581 0.2217 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01834 (18) 0.0288 (2) 0.0454 (3) −0.00521 (15) 0.00986 (18) −0.00980 (19)
O1 0.0324 (6) 0.0327 (7) 0.0189 (6) −0.0058 (5) 0.0150 (5) −0.0018 (5)
O2 0.0238 (5) 0.0275 (6) 0.0181 (6) −0.0004 (5) 0.0074 (5) 0.0036 (5)
O3 0.0294 (6) 0.0252 (6) 0.0228 (6) 0.0031 (5) 0.0111 (5) 0.0051 (5)
N1 0.0156 (5) 0.0206 (7) 0.0203 (7) 0.0007 (5) 0.0084 (5) −0.0025 (5)
C1 0.0158 (6) 0.0189 (7) 0.0181 (8) −0.0009 (5) 0.0081 (6) −0.0007 (6)
C2 0.0164 (6) 0.0238 (8) 0.0179 (8) −0.0017 (6) 0.0079 (6) 0.0005 (6)
C3 0.0167 (6) 0.0228 (8) 0.0202 (8) −0.0028 (6) 0.0094 (6) −0.0012 (6)
C4 0.0208 (7) 0.0269 (8) 0.0221 (8) −0.0016 (6) 0.0114 (6) 0.0028 (7)
C5 0.0249 (8) 0.0204 (8) 0.0330 (10) −0.0022 (6) 0.0162 (7) 0.0007 (7)
C6 0.0261 (8) 0.0244 (8) 0.0281 (9) −0.0047 (6) 0.0159 (7) −0.0070 (7)
C7 0.0213 (7) 0.0269 (9) 0.0204 (8) −0.0048 (6) 0.0109 (6) −0.0030 (7)
C8 0.0158 (6) 0.0213 (8) 0.0190 (8) −0.0019 (5) 0.0083 (6) 0.0004 (6)
C9 0.0152 (6) 0.0239 (8) 0.0184 (8) −0.0024 (5) 0.0088 (6) −0.0013 (6)
C10 0.0152 (6) 0.0176 (7) 0.0170 (7) −0.0004 (5) 0.0078 (6) −0.0002 (6)
C11 0.0162 (6) 0.0187 (7) 0.0188 (8) −0.0014 (5) 0.0068 (6) 0.0000 (6)
C12 0.0141 (6) 0.0207 (8) 0.0181 (8) −0.0013 (5) 0.0061 (6) −0.0033 (6)
C13 0.0208 (7) 0.0237 (8) 0.0283 (9) 0.0015 (6) 0.0097 (7) −0.0051 (7)
C14 0.0238 (8) 0.0347 (10) 0.0322 (10) 0.0005 (7) 0.0123 (7) −0.0149 (8)
C15 0.0229 (8) 0.0470 (11) 0.0225 (9) −0.0024 (7) 0.0122 (7) −0.0105 (8)
C16 0.0193 (7) 0.0362 (10) 0.0181 (8) −0.0019 (6) 0.0083 (6) −0.0012 (7)
C17 0.0138 (6) 0.0243 (8) 0.0177 (8) −0.0032 (5) 0.0069 (6) −0.0046 (6)
C18 0.0172 (7) 0.0182 (7) 0.0180 (8) −0.0009 (5) 0.0077 (6) 0.0007 (6)
C19 0.0171 (6) 0.0200 (8) 0.0172 (8) −0.0013 (5) 0.0084 (6) −0.0018 (6)
C20 0.0179 (7) 0.0247 (8) 0.0231 (8) −0.0012 (6) 0.0100 (6) −0.0055 (6)
C21 0.0175 (7) 0.0318 (9) 0.0273 (9) 0.0016 (6) 0.0110 (7) −0.0020 (7)
C22 0.0173 (6) 0.0201 (8) 0.0171 (7) 0.0006 (5) 0.0086 (6) −0.0042 (6)
C23 0.0204 (7) 0.0221 (8) 0.0181 (8) 0.0027 (6) 0.0089 (6) 0.0000 (6)
C24 0.0157 (6) 0.0282 (9) 0.0187 (8) 0.0042 (6) 0.0048 (6) −0.0016 (7)
C25 0.0159 (7) 0.0252 (8) 0.0245 (8) −0.0025 (6) 0.0089 (6) −0.0080 (7)
C26 0.0206 (7) 0.0191 (8) 0.0265 (9) 0.0005 (6) 0.0105 (7) −0.0020 (7)
C27 0.0172 (7) 0.0225 (8) 0.0204 (8) 0.0019 (6) 0.0062 (6) −0.0021 (6)

Geometric parameters (Å, °)

Cl1—C25 1.7413 (15) C13—H13A 0.9500
O1—C2 1.2106 (18) C14—C15 1.396 (3)
O2—C9 1.2148 (18) C14—H14A 0.9500
O3—C11 1.2139 (18) C15—C16 1.391 (2)
N1—C1 1.4435 (19) C15—H15A 0.9500
N1—C21 1.4616 (18) C16—C17 1.395 (2)
N1—C20 1.4692 (19) C16—H16A 0.9500
C1—C9 1.547 (2) C17—C18 1.512 (2)
C1—C2 1.553 (2) C18—H18A 0.9900
C1—C10 1.5869 (19) C18—H18B 0.9900
C2—C3 1.482 (2) C19—C22 1.515 (2)
C3—C4 1.390 (2) C19—C20 1.546 (2)
C3—C8 1.400 (2) C19—H19A 1.0000
C4—C5 1.383 (2) C20—H20A 0.9900
C4—H4A 0.9500 C20—H20B 0.9900
C5—C6 1.399 (2) C21—H21A 0.9800
C5—H5A 0.9500 C21—H21B 0.9800
C6—C7 1.386 (2) C21—H21C 0.9800
C6—H6A 0.9500 C22—C27 1.389 (2)
C7—C8 1.388 (2) C22—C23 1.395 (2)
C7—H7A 0.9500 C23—C24 1.389 (2)
C8—C9 1.481 (2) C23—H23A 0.9500
C10—C11 1.543 (2) C24—C25 1.383 (2)
C10—C18 1.543 (2) C24—H24A 0.9500
C10—C19 1.552 (2) C25—C26 1.388 (2)
C11—C12 1.472 (2) C26—C27 1.389 (2)
C12—C17 1.388 (2) C26—H26A 0.9500
C12—C13 1.392 (2) C27—H27A 0.9500
C13—C14 1.383 (2)
C1—N1—C21 116.22 (12) C16—C15—C14 121.65 (16)
C1—N1—C20 107.55 (12) C16—C15—H15A 119.2
C21—N1—C20 114.48 (12) C14—C15—H15A 119.2
N1—C1—C9 115.06 (12) C15—C16—C17 118.13 (16)
N1—C1—C2 117.92 (12) C15—C16—H16A 120.9
C9—C1—C2 101.26 (12) C17—C16—H16A 120.9
N1—C1—C10 100.98 (11) C12—C17—C16 119.69 (15)
C9—C1—C10 111.78 (11) C12—C17—C18 111.45 (13)
C2—C1—C10 110.17 (12) C16—C17—C18 128.86 (15)
O1—C2—C3 127.30 (14) C17—C18—C10 103.97 (12)
O1—C2—C1 125.47 (14) C17—C18—H18A 111.0
C3—C2—C1 107.19 (12) C10—C18—H18A 111.0
C4—C3—C8 120.59 (15) C17—C18—H18B 111.0
C4—C3—C2 129.78 (14) C10—C18—H18B 111.0
C8—C3—C2 109.62 (13) H18A—C18—H18B 109.0
C5—C4—C3 117.96 (15) C22—C19—C20 115.83 (13)
C5—C4—H4A 121.0 C22—C19—C10 114.48 (12)
C3—C4—H4A 121.0 C20—C19—C10 105.05 (12)
C4—C5—C6 121.41 (15) C22—C19—H19A 107.0
C4—C5—H5A 119.3 C20—C19—H19A 107.0
C6—C5—H5A 119.3 C10—C19—H19A 107.0
C7—C6—C5 120.78 (15) N1—C20—C19 105.29 (12)
C7—C6—H6A 119.6 N1—C20—H20A 110.7
C5—C6—H6A 119.6 C19—C20—H20A 110.7
C6—C7—C8 117.89 (15) N1—C20—H20B 110.7
C6—C7—H7A 121.1 C19—C20—H20B 110.7
C8—C7—H7A 121.1 H20A—C20—H20B 108.8
C7—C8—C3 121.35 (15) N1—C21—H21A 109.5
C7—C8—C9 128.97 (14) N1—C21—H21B 109.5
C3—C8—C9 109.68 (13) H21A—C21—H21B 109.5
O2—C9—C8 126.87 (14) N1—C21—H21C 109.5
O2—C9—C1 125.93 (14) H21A—C21—H21C 109.5
C8—C9—C1 107.18 (13) H21B—C21—H21C 109.5
C11—C10—C18 103.63 (11) C27—C22—C23 118.29 (14)
C11—C10—C19 113.48 (12) C27—C22—C19 122.66 (13)
C18—C10—C19 118.72 (12) C23—C22—C19 119.05 (14)
C11—C10—C1 111.72 (12) C24—C23—C22 121.35 (15)
C18—C10—C1 109.58 (11) C24—C23—H23A 119.3
C19—C10—C1 99.89 (11) C22—C23—H23A 119.3
O3—C11—C12 127.43 (14) C25—C24—C23 118.90 (14)
O3—C11—C10 125.39 (14) C25—C24—H24A 120.6
C12—C11—C10 107.18 (12) C23—C24—H24A 120.6
C17—C12—C13 122.31 (15) C24—C25—C26 121.14 (14)
C17—C12—C11 109.22 (13) C24—C25—Cl1 119.84 (12)
C13—C12—C11 128.44 (15) C26—C25—Cl1 119.02 (13)
C14—C13—C12 117.91 (16) C25—C26—C27 118.99 (15)
C14—C13—H13A 121.0 C25—C26—H26A 120.5
C12—C13—H13A 121.0 C27—C26—H26A 120.5
C13—C14—C15 120.28 (16) C26—C27—C22 121.31 (14)
C13—C14—H14A 119.9 C26—C27—H27A 119.3
C15—C14—H14A 119.9 C22—C27—H27A 119.3
C21—N1—C1—C9 65.60 (16) C1—C10—C11—O3 −82.09 (18)
C20—N1—C1—C9 −164.59 (12) C18—C10—C11—C12 −20.04 (14)
C21—N1—C1—C2 −53.86 (18) C19—C10—C11—C12 −150.16 (12)
C20—N1—C1—C2 75.96 (15) C1—C10—C11—C12 97.84 (13)
C21—N1—C1—C10 −173.87 (12) O3—C11—C12—C17 −168.37 (15)
C20—N1—C1—C10 −44.06 (14) C10—C11—C12—C17 11.70 (15)
N1—C1—C2—O1 −30.5 (2) O3—C11—C12—C13 13.8 (3)
C9—C1—C2—O1 −156.98 (15) C10—C11—C12—C13 −166.11 (14)
C10—C1—C2—O1 84.59 (18) C17—C12—C13—C14 −1.0 (2)
N1—C1—C2—C3 147.34 (13) C11—C12—C13—C14 176.57 (14)
C9—C1—C2—C3 20.88 (14) C12—C13—C14—C15 1.7 (2)
C10—C1—C2—C3 −97.55 (13) C13—C14—C15—C16 −0.9 (2)
O1—C2—C3—C4 −16.6 (3) C14—C15—C16—C17 −0.8 (2)
C1—C2—C3—C4 165.63 (15) C13—C12—C17—C16 −0.7 (2)
O1—C2—C3—C8 164.77 (15) C11—C12—C17—C16 −178.66 (13)
C1—C2—C3—C8 −13.04 (16) C13—C12—C17—C18 179.99 (13)
C8—C3—C4—C5 1.1 (2) C11—C12—C17—C18 2.02 (16)
C2—C3—C4—C5 −177.40 (14) C15—C16—C17—C12 1.6 (2)
C3—C4—C5—C6 −0.1 (2) C15—C16—C17—C18 −179.24 (14)
C4—C5—C6—C7 −1.1 (2) C12—C17—C18—C10 −14.68 (15)
C5—C6—C7—C8 1.2 (2) C16—C17—C18—C10 166.07 (14)
C6—C7—C8—C3 −0.1 (2) C11—C10—C18—C17 20.42 (14)
C6—C7—C8—C9 178.77 (14) C19—C10—C18—C17 147.31 (12)
C4—C3—C8—C7 −1.0 (2) C1—C10—C18—C17 −98.94 (13)
C2—C3—C8—C7 177.77 (13) C11—C10—C19—C22 84.37 (16)
C4—C3—C8—C9 179.86 (13) C18—C10—C19—C22 −37.69 (18)
C2—C3—C8—C9 −1.33 (16) C1—C10—C19—C22 −156.60 (12)
C7—C8—C9—O2 17.7 (2) C11—C10—C19—C20 −147.44 (12)
C3—C8—C9—O2 −163.28 (14) C18—C10—C19—C20 90.49 (14)
C7—C8—C9—C1 −163.78 (14) C1—C10—C19—C20 −28.42 (14)
C3—C8—C9—C1 15.24 (15) C1—N1—C20—C19 25.91 (15)
N1—C1—C9—O2 28.6 (2) C21—N1—C20—C19 156.70 (13)
C2—C1—C9—O2 156.89 (14) C22—C19—C20—N1 131.17 (13)
C10—C1—C9—O2 −85.85 (17) C10—C19—C20—N1 3.81 (15)
N1—C1—C9—C8 −149.97 (12) C20—C19—C22—C27 −40.6 (2)
C2—C1—C9—C8 −21.64 (14) C10—C19—C22—C27 81.89 (17)
C10—C1—C9—C8 95.62 (14) C20—C19—C22—C23 140.24 (14)
N1—C1—C10—C11 164.09 (12) C10—C19—C22—C23 −97.25 (16)
C9—C1—C10—C11 −73.08 (15) C27—C22—C23—C24 1.1 (2)
C2—C1—C10—C11 38.68 (16) C19—C22—C23—C24 −179.73 (13)
N1—C1—C10—C18 −81.66 (13) C22—C23—C24—C25 0.3 (2)
C9—C1—C10—C18 41.17 (16) C23—C24—C25—C26 −1.8 (2)
C2—C1—C10—C18 152.93 (12) C23—C24—C25—Cl1 177.50 (12)
N1—C1—C10—C19 43.77 (13) C24—C25—C26—C27 1.9 (2)
C9—C1—C10—C19 166.61 (12) Cl1—C25—C26—C27 −177.41 (12)
C2—C1—C10—C19 −81.64 (14) C25—C26—C27—C22 −0.5 (2)
C18—C10—C11—O3 160.03 (14) C23—C22—C27—C26 −1.0 (2)
C19—C10—C11—O3 29.9 (2) C19—C22—C27—C26 179.86 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C18—H18A···O2 0.99 2.40 3.055 (2) 123
C6—H6A···O1i 0.95 2.57 3.244 (2) 128
C14—H14A···O3i 0.95 2.45 3.167 (2) 132

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6361).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Amalraj, A. & Raghunathan, R. (2003). Tetrahedron, 59, 2907–2911.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540–o1541. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2383. [DOI] [PMC free article] [PubMed]
  11. Wei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2381–o2382. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033642/hb6361sup1.cif

e-67-o2404-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033642/hb6361Isup2.hkl

e-67-o2404-Isup2.hkl (316.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES