Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2498. doi: 10.1107/S1600536811033101

(E)-N′-[1-(Thio­phen-2-yl)ethyl­idene]benzohydrazide

Shang Shan a,*, Yan-Lan Huang a, Han-Qi Guo a, Deng-Feng Li a, Jian Sun a
PMCID: PMC3200815  PMID: 22059048

Abstract

The title compound, C13H12N2OS, was obtained from the condensation reaction of 2-acetyl­thio­phene and benzohydrazide. In the mol­ecule, the formohydrazide fragment is approximately planar (r.m.s deviation = 0.0146 Å) and the mean plane is oriented at dihedral angles of 24.47 (11) and 28.86 (13)°, respectively, to the phenyl and thio­phene rings. The thio­phene and phenyl rings make a dihedral angle of 53.21 (8)°. The benzamide fragment and thio­phene ring are located on the opposite sides of the C=N bond, showing an E conformation. Classical inter­molecular N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions are present in the crystal structure: three such bonds occur to the same O-atom acceptor.

Related literature

For applications of hydrazone derivatives in the biological field, see: Okabe et al. (1993). For general background to this work, see: Qiang et al. (2007). For a related structures, see: Xia et al. (2009); Shan et al. (2011)graphic file with name e-67-o2498-scheme1.jpg

Experimental

Crystal data

  • C13H12N2OS

  • M r = 244.31

  • Orthorhombic, Inline graphic

  • a = 9.906 (3) Å

  • b = 10.542 (5) Å

  • c = 22.870 (5) Å

  • V = 2388.3 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 K

  • 0.32 × 0.29 × 0.28 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • 7859 measured reflections

  • 2153 independent reflections

  • 1552 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.101

  • S = 1.03

  • 2153 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033101/xu6116sup1.cif

e-67-o2498-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033101/xu6116Isup2.hkl

e-67-o2498-Isup2.hkl (103.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033101/xu6116Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.50 3.340 (3) 166
C2—H2⋯O1i 0.93 2.43 3.251 (3) 147
C13—H13A⋯O1i 0.96 2.40 3.246 (3) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

supplementary crystallographic information

Comment

The hydrazone derivatives has attracted our much attention because they have shown to be potential DNA damaging and mutagenic agents (Okabe et al., 1993). As part of the ongoing investigation on the relationship between structure and property of hydrazone derivatives (Qiang et al., 2007) the title compound has recently been prepared in our laboratory and its crystal structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. In the molecule, the formohydrazide fragment is approximately co-planar [r.m.s deviation = 0.0146 Å] and the mean plane is oriented with respect to the phenyl ring and thiophene ring at 24.47 (11) and 28.86 (13)°, respectively. The N2—C8 bond length of 1.286 (2) Å shows a typical C═N double bond. The thiophene and benzamide units are located on the opposite sites of the C═N bond, showing an E configuration.

Intermolecular N—H···O and weak C—H···O hydrogen bonding is present in the crystal structure (Table 1).

Experimental

Benzohydrazide (0.68 g, 5 mmol) was dissolved in ethanol (25 ml), then acetic acid (0.2 ml) was added to the ethanol solution with stirring. The solution was heated at about 333 K for several minutes until it became clear. 2-Acetylthiophene (0.63 g, 5 mmol) was then added slowly into the solution, and the mixture solution was refluxed for 6 h. After cooling to room temperature, yellow microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with absolute methanol to obtain single crystals of the title compound.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.96 Å (methyl) and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms).

Crystal data

C13H12N2OS F(000) = 1024
Mr = 244.31 Dx = 1.359 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2153 reflections
a = 9.906 (3) Å θ = 3.3–25.2°
b = 10.542 (5) Å µ = 0.26 mm1
c = 22.870 (5) Å T = 294 K
V = 2388.3 (14) Å3 Block, yellow
Z = 8 0.32 × 0.29 × 0.28 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer 1552 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
graphite θmax = 25.2°, θmin = 3.3°
Detector resolution: 10.0 pixels mm-1 h = −10→11
ω scans k = −11→12
7859 measured reflections l = −27→23
2153 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.4798P] where P = (Fo2 + 2Fc2)/3
2153 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.61206 (5) 0.31374 (5) 0.02223 (3) 0.0507 (2)
N1 0.30582 (15) 0.50999 (16) 0.12073 (8) 0.0425 (5)
H1 0.3095 0.5895 0.1290 0.051*
N2 0.41317 (15) 0.45043 (16) 0.09296 (8) 0.0422 (4)
O1 0.19122 (15) 0.32660 (14) 0.12656 (9) 0.0679 (5)
C1 0.08229 (18) 0.51074 (18) 0.16290 (10) 0.0376 (5)
C2 0.0570 (2) 0.6393 (2) 0.15591 (10) 0.0462 (6)
H2 0.1126 0.6881 0.1321 0.055*
C3 −0.0508 (2) 0.6949 (2) 0.18432 (11) 0.0549 (6)
H3 −0.0675 0.7810 0.1794 0.066*
C4 −0.1335 (2) 0.6245 (3) 0.21977 (11) 0.0583 (7)
H4 −0.2050 0.6629 0.2393 0.070*
C5 −0.1101 (2) 0.4972 (2) 0.22631 (12) 0.0606 (7)
H5 −0.1664 0.4490 0.2501 0.073*
C6 −0.0040 (2) 0.4405 (2) 0.19801 (10) 0.0495 (6)
H6 0.0103 0.3538 0.2024 0.059*
C7 0.19588 (19) 0.4411 (2) 0.13447 (10) 0.0423 (5)
C8 0.5283 (2) 0.50629 (18) 0.09602 (10) 0.0377 (5)
C9 0.63941 (18) 0.44513 (18) 0.06501 (9) 0.0377 (5)
C10 0.7727 (2) 0.4768 (2) 0.06465 (11) 0.0488 (6)
H10 0.8080 0.5451 0.0853 0.059*
C11 0.8514 (2) 0.3953 (2) 0.02980 (11) 0.0549 (7)
H11 0.9441 0.4043 0.0249 0.066*
C12 0.7782 (2) 0.3029 (2) 0.00428 (11) 0.0509 (6)
H12 0.8141 0.2409 −0.0201 0.061*
C13 0.5569 (2) 0.6255 (2) 0.12900 (11) 0.0523 (6)
H13A 0.5023 0.6930 0.1137 0.078*
H13B 0.6506 0.6471 0.1249 0.078*
H13C 0.5362 0.6130 0.1696 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0387 (3) 0.0543 (4) 0.0590 (4) −0.0030 (3) −0.0008 (3) −0.0143 (3)
N1 0.0321 (9) 0.0425 (9) 0.0529 (13) 0.0001 (8) 0.0042 (8) −0.0043 (8)
N2 0.0328 (9) 0.0455 (9) 0.0484 (12) 0.0030 (8) 0.0026 (8) −0.0031 (8)
O1 0.0465 (9) 0.0458 (9) 0.1112 (16) −0.0032 (7) 0.0204 (9) −0.0110 (9)
C1 0.0319 (10) 0.0441 (11) 0.0368 (13) −0.0032 (9) −0.0021 (9) −0.0031 (9)
C2 0.0422 (12) 0.0472 (12) 0.0491 (16) −0.0032 (10) 0.0022 (11) 0.0017 (10)
C3 0.0555 (14) 0.0501 (13) 0.0591 (17) 0.0100 (11) 0.0014 (12) −0.0064 (12)
C4 0.0485 (13) 0.0730 (17) 0.0533 (17) 0.0060 (13) 0.0099 (12) −0.0136 (13)
C5 0.0592 (15) 0.0688 (16) 0.0538 (18) −0.0099 (13) 0.0207 (13) −0.0064 (12)
C6 0.0537 (13) 0.0479 (12) 0.0470 (15) −0.0034 (11) 0.0064 (11) −0.0016 (11)
C7 0.0344 (11) 0.0441 (12) 0.0485 (15) −0.0015 (10) −0.0023 (10) −0.0020 (10)
C8 0.0345 (10) 0.0393 (10) 0.0392 (13) 0.0005 (9) −0.0022 (10) 0.0023 (9)
C9 0.0346 (10) 0.0382 (10) 0.0402 (13) 0.0003 (9) −0.0007 (9) 0.0029 (9)
C10 0.0375 (11) 0.0448 (12) 0.0641 (17) −0.0057 (10) 0.0032 (11) −0.0064 (11)
C11 0.0354 (11) 0.0549 (13) 0.0744 (19) 0.0005 (10) 0.0097 (12) −0.0043 (13)
C12 0.0437 (12) 0.0548 (14) 0.0542 (16) 0.0068 (11) 0.0061 (11) −0.0068 (12)
C13 0.0389 (11) 0.0533 (13) 0.0646 (18) −0.0006 (10) 0.0028 (11) −0.0126 (12)

Geometric parameters (Å, °)

S1—C12 1.700 (2) C4—H4 0.9300
S1—C9 1.717 (2) C5—C6 1.371 (3)
N1—C7 1.346 (2) C5—H5 0.9300
N1—N2 1.389 (2) C6—H6 0.9300
N1—H1 0.8600 C8—C9 1.459 (3)
N2—C8 1.286 (2) C8—C13 1.493 (3)
O1—C7 1.222 (2) C9—C10 1.361 (3)
C1—C6 1.387 (3) C10—C11 1.407 (3)
C1—C2 1.388 (3) C10—H10 0.9300
C1—C7 1.492 (3) C11—C12 1.347 (3)
C2—C3 1.380 (3) C11—H11 0.9300
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.371 (3) C13—H13A 0.9600
C3—H3 0.9300 C13—H13B 0.9600
C4—C5 1.370 (3) C13—H13C 0.9600
C12—S1—C9 92.23 (10) O1—C7—C1 121.45 (18)
C7—N1—N2 118.85 (17) N1—C7—C1 116.53 (18)
C7—N1—H1 120.6 N2—C8—C9 116.11 (18)
N2—N1—H1 120.6 N2—C8—C13 125.55 (19)
C8—N2—N1 116.57 (17) C9—C8—C13 118.34 (17)
C6—C1—C2 118.51 (19) C10—C9—C8 128.73 (19)
C6—C1—C7 117.01 (18) C10—C9—S1 110.31 (16)
C2—C1—C7 124.48 (19) C8—C9—S1 120.95 (14)
C3—C2—C1 120.0 (2) C9—C10—C11 113.0 (2)
C3—C2—H2 120.0 C9—C10—H10 123.5
C1—C2—H2 120.0 C11—C10—H10 123.5
C4—C3—C2 120.7 (2) C12—C11—C10 112.8 (2)
C4—C3—H3 119.6 C12—C11—H11 123.6
C2—C3—H3 119.6 C10—C11—H11 123.6
C5—C4—C3 119.6 (2) C11—C12—S1 111.59 (17)
C5—C4—H4 120.2 C11—C12—H12 124.2
C3—C4—H4 120.2 S1—C12—H12 124.2
C4—C5—C6 120.3 (2) C8—C13—H13A 109.5
C4—C5—H5 119.8 C8—C13—H13B 109.5
C6—C5—H5 119.8 H13A—C13—H13B 109.5
C5—C6—C1 120.8 (2) C8—C13—H13C 109.5
C5—C6—H6 119.6 H13A—C13—H13C 109.5
C1—C6—H6 119.6 H13B—C13—H13C 109.5
O1—C7—N1 121.93 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.50 3.340 (3) 166
C2—H2···O1i 0.93 2.43 3.251 (3) 147
C13—H13A···O1i 0.96 2.40 3.246 (3) 147

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU6116).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  5. Qiang, G.-R., Fan, Z., Shan, S., Tian, Y.-L. & Fu, X.-C. (2007). Acta Cryst. E63, o2246–o2248.
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Shan, S., Wang, Z., Huang, Y.-L., Guo, H.-Q. & Li, D.-F. (2011). Acta Cryst. E67, o2497. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Xia, L.-Y., Wang, W.-L., Wang, S.-H., Huang, Y.-L. & Shan, S. (2009). Acta Cryst. E65, o1900. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033101/xu6116sup1.cif

e-67-o2498-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033101/xu6116Isup2.hkl

e-67-o2498-Isup2.hkl (103.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033101/xu6116Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES