Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2425. doi: 10.1107/S1600536811032843

2-[(Indan-1-yl­idene)amino]­ethanol

Abdulrahman O Al-Youbi a, Abdullah M Asiri a,b, Hassan M Faidallah a, Khalid A Alamry a, Seik Weng Ng c,a,*
PMCID: PMC3200817  PMID: 22064824

Abstract

The five-membed ring of the title compound, C11H13NO, that is fused with the aromatic ring is approximately planar (r.m.s. deviation = 0.037 Å) despite the presence of the sp 3-hybrid­ized ethyl­ene linkage. The hy­droxy group of the N-bound hy­droxy­ethyl chain serves as hydrogen-bond donor to the azomethine N atom of an adjacent mol­ecule, generating a hydrogen-bonded C 2-symmetric dimer.

Related literature

The related C13H13NO amine is a reagent in the synthesis of pharmaceuticals, see: Stange et al. (1957).graphic file with name e-67-o2425-scheme1.jpg

Experimental

Crystal data

  • C11H13NO

  • M r = 175.22

  • Monoclinic, Inline graphic

  • a = 16.0207 (4) Å

  • b = 9.2002 (2) Å

  • c = 13.0600 (3) Å

  • β = 112.855 (3)°

  • V = 1773.83 (7) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.10 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.825, T max = 0.937

  • 3090 measured reflections

  • 1745 independent reflections

  • 1590 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.099

  • S = 1.02

  • 1745 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032843/bt5608sup1.cif

e-67-o2425-sup1.cif (14.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032843/bt5608Isup2.hkl

e-67-o2425-Isup2.hkl (86KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032843/bt5608Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.91 (2) 1.91 (2) 2.820 (1) 173 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

A enormously large number of Schiff base derivatives of aldehydes and ketones have been synthesized; however, 1-indanone represents an anomaly as only few have been reported. In the 2-aminoethanol derivative (Scheme I), the five-membed cyclohexene ring is planar despite the presence of sp3-hybridized ethylene linkage molecule (Fig. 1). The hydroxy group of the N-bound hydroxyethyl chain serves as hydrogen-bond donor to the azomethine N atom of an adjacent molecule to generate a hydrogen-bonded dinuclear molecule (Table 1). However, there is no significant π interaction of the rings as the distances between them exceed 3.5 Å (Fig. 2). The compound has not been reported in the chemical literature; on the other hand, the corresponding reduced amine is a reagent for the synthesis of pharmaceuticals (Stange et al., 1957).

Experimental

A mixture of 2-amino ethanol (0.6 g, 10 mmol) and 1-indanone (1.3 g, 10 mmol) in dry benzene (50 ml) was refluxed in a Dean-Stark apparatus until no more water was collected (in about 2 h). The solvent was then removed under reduced pressure and the residue treated with methanol. The solid which separated out was recystalized from ethanol to give colorless, 418–419 K.

Refinement

Carbon bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The hydroxy H-atom was located in a difference Fouier map and was freely refined.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C13H11NO at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Hydrogen-bonded dimer. The atoms of the aromatic rings are shown with their van der Waals surfaces.

Crystal data

C11H13NO F(000) = 752
Mr = 175.22 Dx = 1.312 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2yc Cell parameters from 1977 reflections
a = 16.0207 (4) Å θ = 3.7–74.2°
b = 9.2002 (2) Å µ = 0.67 mm1
c = 13.0600 (3) Å T = 100 K
β = 112.855 (3)° Prism, colorless
V = 1773.83 (7) Å3 0.30 × 0.30 × 0.10 mm
Z = 8

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 1745 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 1590 reflections with I > 2σ(I)
Mirror Rint = 0.015
Detector resolution: 10.4041 pixels mm-1 θmax = 74.4°, θmin = 5.7°
ω scans h = −19→19
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −11→6
Tmin = 0.825, Tmax = 0.937 l = −15→16
3090 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0573P)2 + 1.1159P] where P = (Fo2 + 2Fc2)/3
1745 reflections (Δ/σ)max = 0.001
122 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.21 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.61199 (6) 0.25279 (9) 0.23182 (7) 0.0186 (2)
H1 0.5586 (14) 0.303 (2) 0.2000 (16) 0.051 (6)*
N1 0.54795 (6) 0.41152 (11) 0.38232 (7) 0.0155 (2)
C1 0.50616 (8) 0.78897 (13) 0.39934 (9) 0.0162 (3)
C2 0.44473 (8) 0.90379 (13) 0.36833 (10) 0.0186 (3)
H2 0.4646 1.0007 0.3891 0.022*
C3 0.35384 (8) 0.87441 (13) 0.30649 (10) 0.0194 (3)
H3 0.3114 0.9521 0.2851 0.023*
C4 0.32389 (8) 0.73221 (13) 0.27531 (9) 0.0180 (3)
H4 0.2615 0.7139 0.2334 0.022*
C5 0.38514 (8) 0.61760 (13) 0.30546 (9) 0.0160 (3)
H5 0.3653 0.5209 0.2840 0.019*
C6 0.47636 (7) 0.64727 (12) 0.36786 (9) 0.0148 (3)
C7 0.55414 (7) 0.54679 (13) 0.40624 (9) 0.0147 (3)
C8 0.63802 (7) 0.63476 (13) 0.47441 (9) 0.0174 (3)
H8A 0.6859 0.6219 0.4450 0.021*
H8B 0.6620 0.6034 0.5531 0.021*
C9 0.60731 (8) 0.79464 (13) 0.46423 (10) 0.0192 (3)
H9A 0.6218 0.8381 0.5385 0.023*
H9B 0.6372 0.8525 0.4242 0.023*
C10 0.63052 (8) 0.32330 (13) 0.42013 (9) 0.0181 (3)
H10A 0.6415 0.2820 0.4942 0.022*
H10B 0.6830 0.3850 0.4268 0.022*
C11 0.62087 (8) 0.20122 (12) 0.33805 (9) 0.0173 (3)
H11A 0.6747 0.1373 0.3680 0.021*
H11B 0.5670 0.1423 0.3299 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0162 (4) 0.0219 (4) 0.0178 (4) 0.0038 (3) 0.0067 (3) 0.0012 (3)
N1 0.0144 (5) 0.0173 (5) 0.0142 (5) 0.0019 (4) 0.0047 (4) 0.0002 (4)
C1 0.0172 (6) 0.0184 (6) 0.0147 (5) −0.0006 (4) 0.0080 (4) −0.0002 (4)
C2 0.0223 (6) 0.0158 (5) 0.0194 (6) 0.0006 (5) 0.0102 (5) 0.0001 (4)
C3 0.0198 (6) 0.0199 (6) 0.0197 (6) 0.0062 (5) 0.0090 (5) 0.0043 (5)
C4 0.0144 (5) 0.0230 (6) 0.0163 (5) 0.0023 (5) 0.0055 (4) 0.0018 (4)
C5 0.0158 (6) 0.0182 (6) 0.0147 (5) −0.0002 (4) 0.0066 (4) −0.0003 (4)
C6 0.0153 (6) 0.0168 (6) 0.0131 (5) 0.0013 (4) 0.0064 (4) 0.0005 (4)
C7 0.0128 (5) 0.0191 (6) 0.0120 (5) −0.0007 (4) 0.0044 (4) 0.0000 (4)
C8 0.0139 (5) 0.0187 (6) 0.0171 (5) −0.0007 (4) 0.0033 (4) −0.0014 (4)
C9 0.0165 (6) 0.0174 (6) 0.0222 (6) −0.0017 (4) 0.0058 (5) −0.0031 (5)
C10 0.0144 (5) 0.0197 (6) 0.0166 (6) 0.0041 (4) 0.0020 (4) 0.0005 (4)
C11 0.0159 (5) 0.0161 (5) 0.0191 (6) 0.0028 (4) 0.0058 (4) 0.0018 (4)

Geometric parameters (Å, °)

O1—C11 1.4201 (14) C5—H5 0.9500
O1—H1 0.91 (2) C6—C7 1.4742 (15)
N1—C7 1.2776 (15) C7—C8 1.5245 (15)
N1—C10 1.4646 (14) C8—C9 1.5403 (16)
C1—C2 1.3924 (16) C8—H8A 0.9900
C1—C6 1.3943 (16) C8—H8B 0.9900
C1—C9 1.5101 (16) C9—H9A 0.9900
C2—C3 1.3900 (16) C9—H9B 0.9900
C2—H2 0.9500 C10—C11 1.5185 (16)
C3—C4 1.3985 (17) C10—H10A 0.9900
C3—H3 0.9500 C10—H10B 0.9900
C4—C5 1.3890 (16) C11—H11A 0.9900
C4—H4 0.9500 C11—H11B 0.9900
C5—C6 1.3962 (15)
C11—O1—H1 109.4 (12) C7—C8—H8A 110.5
C7—N1—C10 118.90 (10) C9—C8—H8A 110.5
C2—C1—C6 120.08 (11) C7—C8—H8B 110.5
C2—C1—C9 128.34 (11) C9—C8—H8B 110.5
C6—C1—C9 111.57 (10) H8A—C8—H8B 108.7
C3—C2—C1 118.95 (11) C1—C9—C8 104.63 (9)
C3—C2—H2 120.5 C1—C9—H9A 110.8
C1—C2—H2 120.5 C8—C9—H9A 110.8
C2—C3—C4 120.97 (11) C1—C9—H9B 110.8
C2—C3—H3 119.5 C8—C9—H9B 110.8
C4—C3—H3 119.5 H9A—C9—H9B 108.9
C5—C4—C3 120.20 (11) N1—C10—C11 109.93 (9)
C5—C4—H4 119.9 N1—C10—H10A 109.7
C3—C4—H4 119.9 C11—C10—H10A 109.7
C4—C5—C6 118.76 (11) N1—C10—H10B 109.7
C4—C5—H5 120.6 C11—C10—H10B 109.7
C6—C5—H5 120.6 H10A—C10—H10B 108.2
C1—C6—C5 121.05 (11) O1—C11—C10 112.74 (9)
C1—C6—C7 109.80 (10) O1—C11—H11A 109.0
C5—C6—C7 129.11 (11) C10—C11—H11A 109.0
N1—C7—C6 123.55 (10) O1—C11—H11B 109.0
N1—C7—C8 128.83 (10) C10—C11—H11B 109.0
C6—C7—C8 107.61 (10) H11A—C11—H11B 107.8
C7—C8—C9 106.09 (9)
C6—C1—C2—C3 0.39 (17) C10—N1—C7—C8 −2.07 (17)
C9—C1—C2—C3 178.90 (11) C1—C6—C7—N1 −174.79 (10)
C1—C2—C3—C4 −0.12 (17) C5—C6—C7—N1 2.73 (18)
C2—C3—C4—C5 −0.35 (18) C1—C6—C7—C8 4.31 (12)
C3—C4—C5—C6 0.53 (16) C5—C6—C7—C8 −178.17 (11)
C2—C1—C6—C5 −0.20 (17) N1—C7—C8—C9 173.44 (11)
C9—C1—C6—C5 −178.95 (10) C6—C7—C8—C9 −5.60 (12)
C2—C1—C6—C7 177.55 (10) C2—C1—C9—C8 179.04 (11)
C9—C1—C6—C7 −1.19 (13) C6—C1—C9—C8 −2.35 (13)
C4—C5—C6—C1 −0.26 (16) C7—C8—C9—C1 4.78 (12)
C4—C5—C6—C7 −177.54 (10) C7—N1—C10—C11 −148.98 (10)
C10—N1—C7—C6 176.83 (10) N1—C10—C11—O1 63.93 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.91 (2) 1.91 (2) 2.820 (1) 173 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5608).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Stange, K., Friederich, H. & Amann, A. (1957). Ger. Patent 955497, 19570103.
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032843/bt5608sup1.cif

e-67-o2425-sup1.cif (14.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032843/bt5608Isup2.hkl

e-67-o2425-Isup2.hkl (86KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032843/bt5608Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES