Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2346. doi: 10.1107/S1600536811032387

5-Bromo-2-(4-fluoro­phen­yl)-3-phenyl­sulfinyl-1-benzofuran

Pil Ja Seo a, Hong Dae Choi a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3200819  PMID: 22064889

Abstract

In the title compound, C20H12BrFO2S, the 4-fluoro­phenyl ring makes a dihedral angle of 2.63 (6)° with the mean plane of the benzofuran fragment. The dihedral angle between the phenyl ring and the mean plane of the benzofuran fragment is 84.60 (6)°. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, and slipped π–π inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.719 (3) Å, inter­planar distance = 3.000 (3) Å and slippage = 1.520 (3) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 5-halo-2-(4-halophen­yl)-3-phenyl­sulfinyl-1-benzofuran deriv­atives, see: Choi et al. (2010, 2011).graphic file with name e-67-o2346-scheme1.jpg

Experimental

Crystal data

  • C20H12BrFO2S

  • M r = 415.27

  • Triclinic, Inline graphic

  • a = 8.0090 (2) Å

  • b = 9.8607 (3) Å

  • c = 11.7209 (3) Å

  • α = 70.471 (2)°

  • β = 83.171 (2)°

  • γ = 69.583 (2)°

  • V = 817.59 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 173 K

  • 0.29 × 0.19 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.513, T max = 0.649

  • 15330 measured reflections

  • 4102 independent reflections

  • 3428 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.082

  • S = 1.02

  • 4102 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032387/zl2399sup1.cif

e-67-o2346-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032387/zl2399Isup2.hkl

e-67-o2346-Isup2.hkl (201KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032387/zl2399Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.95 2.58 3.460 (2) 154
C19—H19⋯O2ii 0.95 2.55 3.413 (3) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Many compounds containing a benzofuran ring system have drawn much attention owing to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 5-halo-2-(4-halophenyl)-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2010, 2011), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.008 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the 4-fluorophenyl ring and the mean plane of the benzofuran fragment is 2.63 (6)°, and the dihedral angle between the phenyl ring and the mean plane of the benzofuran fragment is 84.60 (6)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between a 4-fluorophenyl H atom and the O atom of the sulfinyl group (Table 1; C13—H13···O2i), and the second one between a phenyl H atom and the O atom of the sulfinyl group (Table 1; C19—H19···O2ii). The crystal packing (Fig. 2) is further stabilized by weak slipped π–π interactions between the benzene rings of adjacent molecules, with Cg···Cgiii distance of 3.719 (3) Å and an interplanar distance of 3.000 (3) Å resulting in a slippage of 1.520 (3) Å (Cg is the centroids of the C2–C7 benzene ring).

Experimental

77% 3-chloroperoxybenzoic acid (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 5-bromo-2-(4-fluorophenyl)-3-phenylsulfanyl-1-benzofuran (319 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 67%, m.p. 473–474 K; Rf = 0.70 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl H atoms. Uiso(H) = 1.2Ueq(C) for aryl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O and π–π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x - 1, y + 1, z; (ii) x - 1, y, z; (iii) - x + 1, - y + 1, - z; (iv) x + 1, y - 1, z; (v) x + 1, y, z.]

Crystal data

C20H12BrFO2S Z = 2
Mr = 415.27 F(000) = 416
Triclinic, P1 Dx = 1.687 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.0090 (2) Å Cell parameters from 5582 reflections
b = 9.8607 (3) Å θ = 2.3–28.3°
c = 11.7209 (3) Å µ = 2.66 mm1
α = 70.471 (2)° T = 173 K
β = 83.171 (2)° Block, colourless
γ = 69.583 (2)° 0.29 × 0.19 × 0.18 mm
V = 817.59 (4) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 4102 independent reflections
Radiation source: rotating anode 3428 reflections with I > 2σ(I)
graphite multilayer Rint = 0.039
Detector resolution: 10.0 pixels mm-1 θmax = 28.5°, θmin = 1.8°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −13→13
Tmin = 0.513, Tmax = 0.649 l = −15→15
15330 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: difference Fourier map
wR(F2) = 0.082 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.2246P] where P = (Fo2 + 2Fc2)/3
4102 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.00885 (3) 0.24519 (3) −0.107040 (19) 0.03957 (9)
S1 0.63342 (6) 0.12842 (5) 0.38339 (4) 0.02592 (11)
F1 0.02314 (18) 0.62109 (15) 0.66048 (12) 0.0443 (3)
O2 0.8243 (2) 0.04378 (17) 0.36866 (14) 0.0362 (3)
O1 0.49496 (18) 0.57208 (14) 0.20182 (11) 0.0254 (3)
C2 0.6785 (2) 0.3543 (2) 0.16790 (16) 0.0229 (4)
C1 0.5920 (2) 0.3166 (2) 0.28359 (16) 0.0228 (4)
C3 0.7985 (3) 0.2720 (2) 0.09969 (17) 0.0256 (4)
H3 0.8443 0.1637 0.1280 0.031*
C4 0.8479 (3) 0.3543 (2) −0.01080 (18) 0.0279 (4)
C5 0.7855 (3) 0.5135 (2) −0.05501 (18) 0.0301 (4)
H5 0.8259 0.5651 −0.1311 0.036*
C6 0.6651 (3) 0.5955 (2) 0.01210 (18) 0.0287 (4)
H6 0.6194 0.7038 −0.0163 0.034*
C7 0.6142 (3) 0.5126 (2) 0.12269 (17) 0.0242 (4)
C8 0.4834 (3) 0.4504 (2) 0.30045 (16) 0.0228 (4)
C9 0.3606 (3) 0.4920 (2) 0.39482 (17) 0.0237 (4)
C10 0.3378 (3) 0.3843 (2) 0.50252 (19) 0.0312 (4)
H10 0.4015 0.2792 0.5148 0.037*
C11 0.2245 (3) 0.4274 (2) 0.59151 (19) 0.0332 (5)
H11 0.2097 0.3534 0.6649 0.040*
C12 0.1332 (3) 0.5797 (2) 0.57210 (19) 0.0301 (4)
C13 0.1499 (3) 0.6903 (2) 0.4678 (2) 0.0347 (5)
H13 0.0843 0.7948 0.4563 0.042*
C14 0.2647 (3) 0.6456 (2) 0.37981 (19) 0.0314 (4)
H14 0.2791 0.7209 0.3072 0.038*
C15 0.5071 (3) 0.0727 (2) 0.30151 (17) 0.0259 (4)
C16 0.5951 (3) −0.0160 (2) 0.2292 (2) 0.0336 (5)
H16 0.7214 −0.0485 0.2233 0.040*
C17 0.4956 (4) −0.0567 (3) 0.1652 (2) 0.0446 (6)
H17 0.5534 −0.1162 0.1138 0.054*
C18 0.3125 (4) −0.0105 (3) 0.1765 (2) 0.0474 (6)
H18 0.2446 −0.0366 0.1311 0.057*
C19 0.2264 (3) 0.0733 (3) 0.2530 (2) 0.0450 (6)
H19 0.1006 0.1015 0.2622 0.054*
C20 0.3238 (3) 0.1155 (2) 0.3157 (2) 0.0334 (5)
H20 0.2660 0.1734 0.3682 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03834 (14) 0.04542 (15) 0.03048 (13) −0.01050 (10) 0.01344 (9) −0.01439 (10)
S1 0.0273 (2) 0.0205 (2) 0.0210 (2) −0.00211 (18) 0.00143 (19) −0.00188 (17)
F1 0.0399 (7) 0.0455 (7) 0.0390 (7) −0.0019 (6) 0.0137 (6) −0.0202 (6)
O2 0.0258 (7) 0.0315 (7) 0.0387 (8) 0.0015 (6) −0.0035 (6) −0.0055 (6)
O1 0.0326 (7) 0.0201 (6) 0.0209 (6) −0.0079 (5) 0.0021 (6) −0.0048 (5)
C2 0.0243 (9) 0.0248 (9) 0.0187 (9) −0.0092 (7) 0.0003 (7) −0.0047 (7)
C1 0.0236 (9) 0.0226 (9) 0.0195 (9) −0.0066 (7) 0.0007 (7) −0.0047 (7)
C3 0.0242 (9) 0.0254 (9) 0.0241 (9) −0.0065 (7) 0.0007 (8) −0.0058 (7)
C4 0.0242 (9) 0.0345 (10) 0.0234 (9) −0.0100 (8) 0.0038 (8) −0.0080 (8)
C5 0.0331 (11) 0.0353 (11) 0.0220 (9) −0.0171 (9) 0.0039 (8) −0.0043 (8)
C6 0.0358 (11) 0.0259 (9) 0.0244 (10) −0.0147 (8) 0.0007 (8) −0.0035 (8)
C7 0.0268 (9) 0.0245 (9) 0.0214 (9) −0.0097 (7) −0.0001 (8) −0.0061 (7)
C8 0.0280 (9) 0.0209 (8) 0.0190 (9) −0.0091 (7) −0.0012 (7) −0.0040 (7)
C9 0.0235 (9) 0.0239 (9) 0.0226 (9) −0.0059 (7) −0.0022 (7) −0.0073 (7)
C10 0.0352 (11) 0.0223 (9) 0.0309 (11) −0.0052 (8) 0.0064 (9) −0.0086 (8)
C11 0.0368 (11) 0.0292 (10) 0.0263 (10) −0.0067 (9) 0.0069 (9) −0.0063 (8)
C12 0.0240 (10) 0.0361 (11) 0.0297 (10) −0.0047 (8) 0.0033 (8) −0.0162 (9)
C13 0.0339 (11) 0.0261 (10) 0.0366 (12) 0.0006 (8) 0.0005 (9) −0.0119 (9)
C14 0.0350 (11) 0.0233 (9) 0.0286 (10) −0.0035 (8) −0.0002 (9) −0.0055 (8)
C15 0.0275 (10) 0.0174 (8) 0.0254 (10) −0.0046 (7) 0.0025 (8) −0.0013 (7)
C16 0.0375 (12) 0.0239 (9) 0.0374 (12) −0.0103 (9) 0.0101 (9) −0.0105 (9)
C17 0.0620 (17) 0.0308 (11) 0.0455 (14) −0.0202 (11) 0.0068 (12) −0.0150 (10)
C18 0.0621 (17) 0.0348 (12) 0.0478 (15) −0.0278 (12) −0.0128 (13) 0.0004 (11)
C19 0.0351 (12) 0.0371 (12) 0.0531 (15) −0.0134 (10) −0.0069 (11) 0.0017 (11)
C20 0.0294 (10) 0.0271 (10) 0.0347 (11) −0.0054 (8) 0.0046 (9) −0.0042 (9)

Geometric parameters (Å, °)

Br1—C4 1.895 (2) C9—C14 1.399 (3)
S1—O2 1.4852 (15) C10—C11 1.377 (3)
S1—C1 1.7698 (18) C10—H10 0.9500
S1—C15 1.794 (2) C11—C12 1.373 (3)
F1—C12 1.353 (2) C11—H11 0.9500
O1—C7 1.371 (2) C12—C13 1.369 (3)
O1—C8 1.382 (2) C13—C14 1.378 (3)
C2—C3 1.389 (3) C13—H13 0.9500
C2—C7 1.391 (3) C14—H14 0.9500
C2—C1 1.441 (3) C15—C16 1.380 (3)
C1—C8 1.368 (3) C15—C20 1.385 (3)
C3—C4 1.376 (3) C16—C17 1.387 (3)
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.397 (3) C17—C18 1.380 (4)
C5—C6 1.380 (3) C17—H17 0.9500
C5—H5 0.9500 C18—C19 1.383 (4)
C6—C7 1.383 (3) C18—H18 0.9500
C6—H6 0.9500 C19—C20 1.375 (3)
C8—C9 1.457 (3) C19—H19 0.9500
C9—C10 1.392 (3) C20—H20 0.9500
O2—S1—C1 106.67 (9) C11—C10—H10 119.5
O2—S1—C15 106.92 (9) C9—C10—H10 119.5
C1—S1—C15 96.40 (9) C12—C11—C10 118.66 (19)
C7—O1—C8 106.92 (14) C12—C11—H11 120.7
C3—C2—C7 119.62 (17) C10—C11—H11 120.7
C3—C2—C1 135.37 (17) F1—C12—C13 119.07 (18)
C7—C2—C1 105.00 (16) F1—C12—C11 118.23 (18)
C8—C1—C2 107.45 (16) C13—C12—C11 122.70 (19)
C8—C1—S1 128.60 (15) C12—C13—C14 118.04 (19)
C2—C1—S1 123.90 (14) C12—C13—H13 121.0
C4—C3—C2 116.94 (18) C14—C13—H13 121.0
C4—C3—H3 121.5 C13—C14—C9 121.58 (19)
C2—C3—H3 121.5 C13—C14—H14 119.2
C3—C4—C5 123.30 (19) C9—C14—H14 119.2
C3—C4—Br1 117.97 (15) C16—C15—C20 121.5 (2)
C5—C4—Br1 118.73 (15) C16—C15—S1 119.32 (16)
C6—C5—C4 119.88 (18) C20—C15—S1 119.10 (16)
C6—C5—H5 120.1 C15—C16—C17 118.7 (2)
C4—C5—H5 120.1 C15—C16—H16 120.6
C5—C6—C7 116.77 (18) C17—C16—H16 120.6
C5—C6—H6 121.6 C18—C17—C16 119.8 (2)
C7—C6—H6 121.6 C18—C17—H17 120.1
O1—C7—C6 125.82 (17) C16—C17—H17 120.1
O1—C7—C2 110.70 (16) C17—C18—C19 120.9 (2)
C6—C7—C2 123.48 (18) C17—C18—H18 119.6
C1—C8—O1 109.92 (16) C19—C18—H18 119.6
C1—C8—C9 135.27 (17) C20—C19—C18 119.7 (2)
O1—C8—C9 114.80 (15) C20—C19—H19 120.2
C10—C9—C14 117.93 (18) C18—C19—H19 120.2
C10—C9—C8 122.43 (17) C19—C20—C15 119.3 (2)
C14—C9—C8 119.61 (17) C19—C20—H20 120.4
C11—C10—C9 121.09 (18) C15—C20—H20 120.4
C3—C2—C1—C8 −178.7 (2) C7—O1—C8—C9 −179.65 (16)
C7—C2—C1—C8 0.2 (2) C1—C8—C9—C10 3.7 (4)
C3—C2—C1—S1 3.7 (3) O1—C8—C9—C10 −177.40 (18)
C7—C2—C1—S1 −177.34 (14) C1—C8—C9—C14 −178.2 (2)
O2—S1—C1—C8 −143.48 (18) O1—C8—C9—C14 0.7 (3)
C15—S1—C1—C8 106.68 (19) C14—C9—C10—C11 0.0 (3)
O2—S1—C1—C2 33.56 (19) C8—C9—C10—C11 178.1 (2)
C15—S1—C1—C2 −76.27 (17) C9—C10—C11—C12 0.1 (3)
C7—C2—C3—C4 0.3 (3) C10—C11—C12—F1 −179.5 (2)
C1—C2—C3—C4 179.1 (2) C10—C11—C12—C13 0.2 (3)
C2—C3—C4—C5 0.9 (3) F1—C12—C13—C14 179.0 (2)
C2—C3—C4—Br1 −179.14 (14) C11—C12—C13—C14 −0.6 (3)
C3—C4—C5—C6 −1.5 (3) C12—C13—C14—C9 0.8 (3)
Br1—C4—C5—C6 178.56 (16) C10—C9—C14—C13 −0.5 (3)
C4—C5—C6—C7 0.8 (3) C8—C9—C14—C13 −178.7 (2)
C8—O1—C7—C6 −179.84 (19) O2—S1—C15—C16 −8.11 (18)
C8—O1—C7—C2 0.7 (2) C1—S1—C15—C16 101.52 (16)
C5—C6—C7—O1 −179.09 (19) O2—S1—C15—C20 169.70 (15)
C5—C6—C7—C2 0.3 (3) C1—S1—C15—C20 −80.67 (16)
C3—C2—C7—O1 178.60 (17) C20—C15—C16—C17 3.0 (3)
C1—C2—C7—O1 −0.6 (2) S1—C15—C16—C17 −179.24 (16)
C3—C2—C7—C6 −0.9 (3) C15—C16—C17—C18 −1.1 (3)
C1—C2—C7—C6 179.93 (19) C16—C17—C18—C19 −1.5 (3)
C2—C1—C8—O1 0.2 (2) C17—C18—C19—C20 2.2 (3)
S1—C1—C8—O1 177.59 (14) C18—C19—C20—C15 −0.3 (3)
C2—C1—C8—C9 179.1 (2) C16—C15—C20—C19 −2.3 (3)
S1—C1—C8—C9 −3.5 (4) S1—C15—C20—C19 179.90 (16)
C7—O1—C8—C1 −0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13···O2i 0.95 2.58 3.460 (2) 154.
C19—H19···O2ii 0.95 2.55 3.413 (3) 150.

Symmetry codes: (i) x−1, y+1, z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2399).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res., 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2172. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o498. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  9. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032387/zl2399sup1.cif

e-67-o2346-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032387/zl2399Isup2.hkl

e-67-o2346-Isup2.hkl (201KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032387/zl2399Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES