Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2325. doi: 10.1107/S1600536811032089

(2S)-3-(1H-Indol-3-yl)-2-(4-methyl­benzene­sulfonamido)­propionic acid monohydrate

Islam Ullah Khan a, Muhammad Nadeem Arshad a,*, Hafiz Mubashar-ur-Rehman a, William T A Harrison b, Muhammad Baqir Ali a
PMCID: PMC3200826  PMID: 22058950

Abstract

In the title compound, C18H18N2O4S·H2O, the indole and toluene ring systems are oriented at a dihedral angle of 84.51 (9)°. In the crystal, the components are linked by N—H⋯O, O—H⋯O, C—H⋯O and N—H⋯π inter­actions. These include a short link from the α-C atom of the amino acid fragment.

Related literature

For details of the synthesis, see: Deng & Mani (2006). For background to sulfonamides in biology, see: Parka et al. (2009); Wang et al. (2007). For related structures, see: Li et al. (2008); Khan et al. (2011).graphic file with name e-67-o2325-scheme1.jpg

Experimental

Crystal data

  • C18H18N2O4S·H2O

  • M r = 376.42

  • Monoclinic, Inline graphic

  • a = 8.4531 (10) Å

  • b = 5.2521 (5) Å

  • c = 20.867 (2) Å

  • β = 98.056 (4)°

  • V = 917.30 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.28 × 0.11 × 0.09 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.944, T max = 0.982

  • 10939 measured reflections

  • 4475 independent reflections

  • 2135 reflections with I > 2σ(I)

  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.107

  • S = 0.94

  • 4475 reflections

  • 243 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 1951 Friedel pairs

  • Flack parameter: −0.05 (10)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032089/wn2443sup1.cif

e-67-o2325-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032089/wn2443Isup2.hkl

e-67-o2325-Isup2.hkl (214.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032089/wn2443Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.88 (4) 2.37 (4) 3.208 (4) 160 (3)
N2—H2NCg3ii 0.79 (4) 2.85 (4) 3.480 (4) 139 (4)
O3—H3O⋯O5iii 0.82 1.81 2.629 (4) 177
C7—H7⋯O4iv 0.98 2.37 3.205 (4) 143
C18—H18C⋯O1v 0.96 2.59 3.456 (5) 151
O5—H1W⋯O2i 0.89 2.05 2.935 (4) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant to strengthen the Materials Chemistry Laboratory at GC University, Lahore, Pakistan.

supplementary crystallographic information

Comment

Tryptophan-based sulfonamides have been reported as non-hydroxamate TNF-α converting enzyme (TACE) inhibitors (Parka et al., 2009), and in another study (Wang et al., 2007) some are reported as acetohydroxy acid synthase (AHAS) inhibitors. The previously reported crystal structures of two active compounds, namely (S)-methyl 2-(4-R-phenylsulfonamido)-3- (1H-indol-3-yl)propanoate [R = H and Cl] (Li et al., 2008) are closely related to the title compound.

In the crystal structure, a water molecule crystallized as a solvent of crystallization along with the sulfonamide (Fig. 1). The indole system (C10—C17/N2) and aromatic ring (C1—C6) are inclined to each other at a dihedral angle of 84.51 (9)°. The plane of the carboxylic acid group is twisted at dihedral angles of 71.46 (13)° and 63.62 (9)° with respect to the aromatic ring and indole unit, respectively.

The configuration of the stereogenic carbon atom, C7, is S, which is consistent with that of the equivalent atom in the starting material.

In the crystal structure, the components are linked by a variety of interactions (Table 1). The carboxylic acid makes an O—H···O hydrogen bond to the water molecule, and the water molecule is involved in the same type of hydrogen bond to the sulfonyl group, to generate alternating [110] chains of the two species. The amino-acid N—H group forms an intermolecular link to the sulfonyl group. The indole N—H group forms an N—H···π bond to the six-membered ring of the indole system of an adjacent molecule. Two C—H···O interactions are also present; a strong link from the α-carbon atom, C7, as also seen in related structures (Khan et al., 2011) and a weaker link from the methyl group.

Experimental

The title compound was prepared following the literature method (Deng & Mani, 2006) and recrystalized from methanol by slow evaporation to yield colourless needles.

Refinement

The C-bound H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.96 Å for methyl, C—H = 0.97 Å for methylene, C—H = 0.98 Å for methine, and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) but Uiso(H) = 1.5 Ueq(C) for methyl.

The hydroxyl H-atom of the carboxylic acid group was also positioned with idealized geometry, O—H = 0.82 Å, and refined as riding with Uiso(H) = 1.5 Ueq(O).

The H atoms of the water molecule were located in a difference map with O—H = 0.893–0.900Å, and refined as riding with Uiso(H) = Ueq(O).

The H atoms attached to N were located in a difference map and refined freeely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Partial packing diagram, showing [110] chains of alternating organic and water molecules linked by O—H···O hydrogen bonds shown as dashed lines. Symmetry code: (i) x+1, y–1, z.

Crystal data

C18H18N2O4S·H2O F(000) = 396
Mr = 376.42 Dx = 1.363 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1381 reflections
a = 8.4531 (10) Å θ = 2.4–19.2°
b = 5.2521 (5) Å µ = 0.21 mm1
c = 20.867 (2) Å T = 296 K
β = 98.056 (4)° Needle, colorless
V = 917.30 (17) Å3 0.28 × 0.11 × 0.09 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer 4475 independent reflections
Radiation source: fine-focus sealed tube 2135 reflections with I > 2σ(I)
graphite Rint = 0.064
φ and ω scans θmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −11→10
Tmin = 0.944, Tmax = 0.982 k = −6→7
10939 measured reflections l = −27→27

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.034P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max < 0.001
4475 reflections Δρmax = 0.20 e Å3
243 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack (1983), 1951 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.05 (10)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3845 (4) 0.3366 (8) 0.10176 (15) 0.0401 (8)
C2 0.2730 (4) 0.1527 (8) 0.08284 (18) 0.0527 (10)
H2 0.2528 0.0243 0.1113 0.063*
C3 0.1902 (5) 0.1612 (9) 0.0202 (2) 0.0679 (12)
H3 0.1150 0.0358 0.0069 0.081*
C4 0.2171 (5) 0.3511 (11) −0.02263 (17) 0.0619 (11)
C5 0.3258 (5) 0.5359 (10) −0.0017 (2) 0.0675 (12)
H5 0.3435 0.6676 −0.0296 0.081*
C6 0.4098 (4) 0.5318 (8) 0.05980 (19) 0.0561 (10)
H6 0.4832 0.6597 0.0731 0.067*
C7 0.2547 (4) 0.3994 (6) 0.24734 (14) 0.0352 (8)
H7 0.2140 0.2592 0.2187 0.042*
C8 0.1348 (5) 0.6132 (8) 0.23914 (16) 0.0452 (10)
C9 0.2837 (4) 0.2991 (7) 0.31717 (14) 0.0450 (9)
H9A 0.1823 0.2471 0.3298 0.054*
H9B 0.3516 0.1498 0.3187 0.054*
C10 0.3599 (5) 0.4909 (7) 0.36487 (16) 0.0454 (9)
C11 0.2860 (5) 0.6835 (8) 0.39356 (18) 0.0585 (11)
H11 0.1769 0.7169 0.3868 0.070*
C12 0.5453 (6) 0.7203 (8) 0.43133 (18) 0.0552 (11)
C13 0.5242 (5) 0.5127 (7) 0.38869 (15) 0.0451 (9)
C14 0.6611 (5) 0.3742 (8) 0.37809 (17) 0.0539 (10)
H14 0.6522 0.2370 0.3497 0.065*
C15 0.8074 (6) 0.4441 (8) 0.4102 (2) 0.0704 (13)
H15 0.8977 0.3517 0.4037 0.084*
C16 0.8233 (6) 0.6528 (10) 0.4526 (2) 0.0782 (14)
H16 0.9239 0.6974 0.4736 0.094*
C17 0.6930 (6) 0.7908 (9) 0.46353 (18) 0.0725 (14)
H17 0.7031 0.9285 0.4918 0.087*
C18 0.1307 (5) 0.3506 (12) −0.09171 (16) 0.0977 (16)
H18A 0.0896 0.5178 −0.1027 0.147*
H18B 0.0439 0.2311 −0.0952 0.147*
H18C 0.2039 0.3026 −0.1208 0.147*
S1 0.49606 (10) 0.32979 (18) 0.17916 (4) 0.0446 (2)
N1 0.4035 (3) 0.4923 (6) 0.22720 (13) 0.0402 (7)
H1N 0.413 (4) 0.659 (7) 0.2271 (15) 0.048*
N2 0.3962 (5) 0.8178 (7) 0.43322 (15) 0.0681 (11)
H2N 0.375 (5) 0.941 (8) 0.452 (2) 0.082*
O1 0.6432 (3) 0.4579 (5) 0.17601 (12) 0.0647 (8)
O2 0.4980 (3) 0.0709 (4) 0.20122 (12) 0.0553 (7)
O3 −0.0007 (3) 0.5429 (6) 0.25925 (15) 0.0744 (8)
H3O −0.0566 0.6686 0.2623 0.112*
O4 0.1563 (3) 0.8175 (5) 0.21751 (12) 0.0623 (7)
O5 0.8218 (3) 0.9515 (6) 0.26435 (15) 0.1120 (13)
H1W 0.7260 0.9876 0.2425 0.134*
H2W 0.8393 0.9747 0.3075 0.134*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0351 (19) 0.042 (2) 0.0446 (19) 0.002 (2) 0.0098 (15) 0.000 (2)
C2 0.048 (3) 0.061 (3) 0.048 (2) −0.004 (2) 0.004 (2) 0.000 (2)
C3 0.051 (3) 0.087 (4) 0.063 (3) −0.008 (3) 0.000 (2) −0.018 (3)
C4 0.058 (3) 0.090 (3) 0.039 (2) 0.032 (3) 0.009 (2) −0.003 (3)
C5 0.075 (3) 0.075 (3) 0.054 (3) 0.010 (3) 0.018 (3) 0.015 (3)
C6 0.054 (3) 0.057 (3) 0.057 (3) −0.004 (2) 0.006 (2) 0.007 (2)
C7 0.036 (2) 0.030 (2) 0.0386 (19) −0.0023 (15) 0.0010 (15) −0.0027 (14)
C8 0.044 (3) 0.043 (2) 0.045 (2) 0.0024 (19) −0.0057 (19) 0.005 (2)
C9 0.052 (2) 0.036 (2) 0.047 (2) 0.0024 (19) 0.0053 (17) 0.0048 (19)
C10 0.063 (3) 0.036 (2) 0.037 (2) 0.0040 (19) 0.009 (2) 0.0035 (18)
C11 0.075 (3) 0.054 (3) 0.044 (2) 0.011 (2) 0.000 (2) 0.010 (2)
C12 0.083 (3) 0.045 (2) 0.036 (2) −0.002 (2) 0.001 (2) 0.0037 (18)
C13 0.071 (3) 0.035 (2) 0.0279 (19) 0.006 (2) 0.0029 (19) 0.0029 (17)
C14 0.064 (3) 0.048 (3) 0.048 (2) −0.004 (2) 0.003 (2) −0.005 (2)
C15 0.070 (3) 0.077 (3) 0.064 (3) −0.001 (2) 0.007 (2) −0.001 (2)
C16 0.095 (4) 0.081 (4) 0.053 (3) −0.030 (3) −0.008 (3) 0.002 (3)
C17 0.121 (4) 0.053 (3) 0.041 (2) −0.021 (3) 0.003 (3) −0.004 (2)
C18 0.091 (3) 0.161 (5) 0.040 (2) 0.040 (4) 0.006 (2) −0.013 (3)
S1 0.0341 (5) 0.0464 (6) 0.0523 (5) 0.0018 (5) 0.0027 (4) 0.0029 (6)
N1 0.0448 (19) 0.0351 (17) 0.0408 (17) −0.0059 (14) 0.0063 (14) −0.0042 (15)
N2 0.115 (3) 0.045 (2) 0.044 (2) 0.018 (3) 0.008 (2) −0.006 (2)
O1 0.0332 (16) 0.084 (2) 0.0765 (19) −0.0112 (14) 0.0066 (14) 0.0007 (16)
O2 0.0540 (18) 0.0403 (16) 0.0704 (17) 0.0153 (13) 0.0050 (14) 0.0139 (14)
O3 0.0496 (19) 0.077 (2) 0.100 (2) 0.0180 (15) 0.0216 (17) 0.0269 (19)
O4 0.0631 (17) 0.0382 (15) 0.0824 (17) 0.0088 (18) −0.0015 (13) 0.0116 (18)
O5 0.081 (2) 0.143 (3) 0.104 (2) 0.065 (2) −0.0165 (19) −0.035 (2)

Geometric parameters (Å, °)

C1—C2 1.369 (5) C11—H11 0.9300
C1—C6 1.384 (5) C12—N2 1.366 (5)
C1—S1 1.753 (3) C12—C17 1.383 (6)
C2—C3 1.395 (5) C12—C13 1.403 (5)
C2—H2 0.9300 C13—C14 1.411 (5)
C3—C4 1.379 (6) C14—C15 1.372 (5)
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.366 (6) C15—C16 1.404 (6)
C4—C18 1.522 (5) C15—H15 0.9300
C5—C6 1.377 (5) C16—C17 1.365 (6)
C5—H5 0.9300 C16—H16 0.9300
C6—H6 0.9300 C17—H17 0.9300
C7—N1 1.465 (4) C18—H18A 0.9600
C7—C8 1.506 (5) C18—H18B 0.9600
C7—C9 1.536 (4) C18—H18C 0.9600
C7—H7 0.9800 S1—O1 1.423 (2)
C8—O4 1.188 (4) S1—O2 1.435 (2)
C8—O3 1.327 (4) S1—N1 1.601 (3)
C9—C10 1.497 (5) N1—H1N 0.88 (4)
C9—H9A 0.9700 N2—H2N 0.79 (4)
C9—H9B 0.9700 O3—H3O 0.8200
C10—C11 1.370 (5) O5—H1W 0.8926
C10—C13 1.412 (5) O5—H2W 0.9002
C11—N2 1.354 (5)
C2—C1—C6 120.1 (3) N2—C12—C17 131.2 (4)
C2—C1—S1 120.7 (3) N2—C12—C13 105.9 (4)
C6—C1—S1 119.2 (3) C17—C12—C13 122.8 (4)
C1—C2—C3 118.9 (4) C12—C13—C14 117.8 (4)
C1—C2—H2 120.6 C12—C13—C10 108.5 (4)
C3—C2—H2 120.6 C14—C13—C10 133.7 (3)
C4—C3—C2 121.6 (4) C15—C14—C13 119.3 (4)
C4—C3—H3 119.2 C15—C14—H14 120.3
C2—C3—H3 119.2 C13—C14—H14 120.3
C5—C4—C3 118.1 (4) C14—C15—C16 121.1 (4)
C5—C4—C18 121.1 (5) C14—C15—H15 119.4
C3—C4—C18 120.8 (5) C16—C15—H15 119.4
C4—C5—C6 121.5 (4) C17—C16—C15 120.8 (5)
C4—C5—H5 119.2 C17—C16—H16 119.6
C6—C5—H5 119.2 C15—C16—H16 119.6
C5—C6—C1 119.7 (4) C16—C17—C12 118.2 (5)
C5—C6—H6 120.1 C16—C17—H17 120.9
C1—C6—H6 120.1 C12—C17—H17 120.9
N1—C7—C8 108.1 (3) C4—C18—H18A 109.5
N1—C7—C9 110.9 (3) C4—C18—H18B 109.5
C8—C7—C9 112.2 (3) H18A—C18—H18B 109.5
N1—C7—H7 108.5 C4—C18—H18C 109.5
C8—C7—H7 108.5 H18A—C18—H18C 109.5
C9—C7—H7 108.5 H18B—C18—H18C 109.5
O4—C8—O3 123.8 (4) O1—S1—O2 119.49 (16)
O4—C8—C7 125.5 (4) O1—S1—N1 106.46 (16)
O3—C8—C7 110.7 (3) O2—S1—N1 106.77 (15)
C10—C9—C7 113.4 (3) O1—S1—C1 107.97 (16)
C10—C9—H9A 108.9 O2—S1—C1 107.19 (18)
C7—C9—H9A 108.9 N1—S1—C1 108.60 (15)
C10—C9—H9B 108.9 C7—N1—S1 121.1 (2)
C7—C9—H9B 108.9 C7—N1—H1N 114 (2)
H9A—C9—H9B 107.7 S1—N1—H1N 119 (2)
C11—C10—C13 105.8 (3) C11—N2—C12 110.2 (4)
C11—C10—C9 127.4 (4) C11—N2—H2N 123 (3)
C13—C10—C9 126.8 (3) C12—N2—H2N 126 (3)
N2—C11—C10 109.6 (4) C8—O3—H3O 109.5
N2—C11—H11 125.2 H1W—O5—H2W 119.5
C10—C11—H11 125.2
C6—C1—C2—C3 2.2 (5) C9—C10—C13—C12 178.8 (3)
S1—C1—C2—C3 −178.1 (3) C11—C10—C13—C14 180.0 (4)
C1—C2—C3—C4 −0.6 (6) C9—C10—C13—C14 −1.0 (6)
C2—C3—C4—C5 −1.2 (6) C12—C13—C14—C15 1.0 (5)
C2—C3—C4—C18 177.4 (4) C10—C13—C14—C15 −179.2 (4)
C3—C4—C5—C6 1.5 (6) C13—C14—C15—C16 −0.8 (6)
C18—C4—C5—C6 −177.1 (4) C14—C15—C16—C17 0.5 (6)
C4—C5—C6—C1 0.0 (6) C15—C16—C17—C12 −0.4 (6)
C2—C1—C6—C5 −2.0 (5) N2—C12—C17—C16 178.8 (4)
S1—C1—C6—C5 178.4 (3) C13—C12—C17—C16 0.6 (6)
N1—C7—C8—O4 2.9 (5) C2—C1—S1—O1 153.8 (3)
C9—C7—C8—O4 125.5 (4) C6—C1—S1—O1 −26.6 (3)
N1—C7—C8—O3 −177.4 (3) C2—C1—S1—O2 23.8 (3)
C9—C7—C8—O3 −54.8 (4) C6—C1—S1—O2 −156.5 (3)
N1—C7—C9—C10 55.8 (4) C2—C1—S1—N1 −91.2 (3)
C8—C7—C9—C10 −65.2 (4) C6—C1—S1—N1 88.5 (3)
C7—C9—C10—C11 82.0 (4) C8—C7—N1—S1 −132.1 (3)
C7—C9—C10—C13 −96.8 (4) C9—C7—N1—S1 104.5 (3)
C13—C10—C11—N2 −0.3 (4) O1—S1—N1—C7 −173.1 (3)
C9—C10—C11—N2 −179.3 (3) O2—S1—N1—C7 −44.4 (3)
N2—C12—C13—C14 −179.5 (3) C1—S1—N1—C7 70.8 (3)
C17—C12—C13—C14 −0.9 (5) C10—C11—N2—C12 0.7 (4)
N2—C12—C13—C10 0.6 (4) C17—C12—N2—C11 −179.3 (4)
C17—C12—C13—C10 179.2 (4) C13—C12—N2—C11 −0.8 (4)
C11—C10—C13—C12 −0.2 (4)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 ring.
D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.88 (4) 2.37 (4) 3.208 (4) 160 (3)
N2—H2N···Cg3ii 0.79 (4) 2.85 (4) 3.480 (4) 139 (4)
O3—H3O···O5iii 0.82 1.81 2.629 (4) 177
C7—H7···O4iv 0.98 2.37 3.205 (4) 143
C18—H18C···O1v 0.96 2.59 3.456 (5) 151
O5—H1W···O2i 0.89 2.05 2.935 (4) 174

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1; (iii) x−1, y, z; (iv) x, y−1, z; (v) −x+1, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2443).

References

  1. Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Khan, M. H., Khan, I. U., Arshad, M. N., Rafique, H. M. & Harrison, W. T. A. (2011). Crystals, 1, 69–77.
  7. Li, W. M., Wang, J. G., Gau, W. C., Li, Z. M. & Song, H. B. (2008). Chin. J. Struct. Chem. 27, 691–696.
  8. Parka, K., Gopalsamya, A., Aplascaa, A., Ellingboea, J. W., Xub, W., Zhangc, Y. & Levina, J. I. (2009). Bioorg. Med. Chem. 17, 3857–3865.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wang, J. G., Xiao, Y. J., Li, Y. H., Ma, Y. & Li, Z. M. (2007). Bioorg. Med. Chem. 15, 374–380. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032089/wn2443sup1.cif

e-67-o2325-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032089/wn2443Isup2.hkl

e-67-o2325-Isup2.hkl (214.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032089/wn2443Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES