Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2409. doi: 10.1107/S1600536811033848

(2,6-Difluoro­phen­yl)(4-methyl­piperidin-1-yl)methanone

Mohammad T M Al-Dajani a, Hassan H Adballah b, Nornisah Mohamed a, Madhukar Hemamalini c, Hoong-Kun Fun c,*,
PMCID: PMC3200831  PMID: 22065411

Abstract

In the title compound, C13H15F2NO, the piperidine ring adopts a chair conformation. The dihedral angle between the least-squares plane of the piperidine ring and the benzene ring is 48.75 (7)°. In the crystal structure, the mol­ecules are connected via C—H⋯O hydrogen bonds, forming a zigzag chain along the b axis.

Related literature

For the biological applications of piperidine derivatives, see: Waelbroeck et al. (1992); El Hadri et al. (1995). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-o2409-scheme1.jpg

Experimental

Crystal data

  • C13H15F2NO

  • M r = 239.26

  • Monoclinic, Inline graphic

  • a = 9.1807 (7) Å

  • b = 10.9910 (8) Å

  • c = 13.2477 (8) Å

  • β = 115.582 (4)°

  • V = 1205.71 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.43 × 0.38 × 0.19 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.956, T max = 0.981

  • 11030 measured reflections

  • 3513 independent reflections

  • 2617 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.136

  • S = 1.06

  • 3513 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033848/is2763sup1.cif

e-67-o2409-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033848/is2763Isup2.hkl

e-67-o2409-Isup2.hkl (168.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033848/is2763Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.93 2.35 3.2646 (18) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

NM gratefully acknowledges funding from the Malaysian Ministry of Science, Technology and Innovation, through the Malaysian Institute of Pharmaceutical and Nutraceutical R&D Initiative Grant (grant Nos. 09-05-IFN-MEB 004 and 304/PFARMASI/650512/I121). HKF and MH thank the Malaysian Government and USM for the Research University Grant (No. 1001/PFIZIK/811160). MH also thanks USM for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

The piperidine nucleus is present in a wide range of biologically active compounds. For example, the binding properties of 4-diphenyl acetoxy-N-methylpiperidine methiodide (4-DAMP) and its analogs have been evaluated on muscarinic receptors in human neuroblastoma NB-OK1 cells (M1 receptor subtype), rat heart (M2 subtype), rat pancreas (M3 subtype) and the putative M4 receptor subtype in striatum (Waelbroeck et al., 1992). NMDA receptor antagonist properties of piperidine-2-carboxylic acid derivatives have also been reported (El Hadri et al., 1995). Due to their biological importance of piperidine derivatives, herein, we have present the crystal structure of the title compound (I).

The molecular structure of the title compound is shown in Fig. 1. The piperidine (N1/C8–C12) ring adopts a chair conformation [puckering parameters: Q = 0.5569 (14) Å, θ = 2.24 (14)° and φ = 132 (4)° (Cremer & Pople, 1975)] with atoms C8 and C10 deviating by 0.230 (1) and 0.238 (1) Å from the least-squares plane defined by the remaining atoms (N1/C9/C11–C12) in the ring. The dihedral angle between the least-squares plane of the piperidine (N1/C8–C12) ring and the fluoro-subsituted benzene (C1–C6) ring is 48.75 (7)°.

In the crystal structure, the molecules are connected via C—H···O hydrogen bonds (Table 1) forming one-dimensional supramolecular chains along the b axis (Fig. 2).

Experimental

In a round bottom flask, 25ml of toluene was mixed with 4-methylpiperidine (0.01 mol, 1.0 g) with stirring. Drops of 2,6-difluorobenzylchloride (0.01 mol, 1.7g) dissolved in toluene was then added. The reaction mixture was refluxed for 30 min. The yellow precipitate formed was washed with chloroform and with water. The precipitate was then dissolved in methanol at room temperature. After few days, colourless needle-shaped crystals were formed by slow evaporation.

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis. Dashed lines represent C—H···O hydrogen bonds.

Crystal data

C13H15F2NO F(000) = 504
Mr = 239.26 Dx = 1.318 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4002 reflections
a = 9.1807 (7) Å θ = 2.5–29.6°
b = 10.9910 (8) Å µ = 0.10 mm1
c = 13.2477 (8) Å T = 296 K
β = 115.582 (4)° Block, colourless
V = 1205.71 (15) Å3 0.43 × 0.38 × 0.19 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 3513 independent reflections
Radiation source: fine-focus sealed tube 2617 reflections with I > 2σ(I)
graphite Rint = 0.018
φ and ω scans θmax = 30.1°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.956, Tmax = 0.981 k = −13→15
11030 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.1308P] where P = (Fo2 + 2Fc2)/3
3513 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.26788 (12) 0.67786 (9) 0.26565 (7) 0.0733 (3)
F2 0.16103 (13) 0.89859 (9) 0.52606 (7) 0.0835 (3)
O1 0.23349 (12) 0.59626 (9) 0.48443 (8) 0.0697 (3)
N1 0.46198 (12) 0.70862 (9) 0.55150 (9) 0.0528 (3)
C1 0.19420 (13) 0.77289 (11) 0.28922 (9) 0.0476 (3)
C2 0.10112 (15) 0.85157 (14) 0.20507 (10) 0.0600 (4)
H2A 0.0896 0.8407 0.1324 0.072*
C3 0.02604 (15) 0.94608 (15) 0.23065 (12) 0.0638 (4)
H3A −0.0384 0.9992 0.1744 0.077*
C4 0.04459 (16) 0.96375 (14) 0.33859 (12) 0.0625 (4)
H4A −0.0058 1.0283 0.3562 0.075*
C5 0.13981 (15) 0.88297 (12) 0.41937 (10) 0.0517 (3)
C6 0.21693 (12) 0.78571 (10) 0.39862 (8) 0.0413 (2)
C7 0.30603 (14) 0.68901 (10) 0.48395 (9) 0.0455 (3)
C8 0.54606 (14) 0.82462 (12) 0.56603 (10) 0.0526 (3)
H8A 0.4746 0.8839 0.5139 0.063*
H8B 0.6391 0.8145 0.5502 0.063*
C9 0.60040 (14) 0.86998 (11) 0.68488 (10) 0.0504 (3)
H9A 0.5064 0.8871 0.6981 0.060*
H9B 0.6604 0.9451 0.6946 0.060*
C10 0.70612 (14) 0.77668 (11) 0.76970 (10) 0.0503 (3)
H10A 0.8025 0.7636 0.7570 0.060*
C11 0.61572 (15) 0.65643 (11) 0.74973 (11) 0.0563 (3)
H11A 0.6864 0.5953 0.7997 0.068*
H11B 0.5238 0.6660 0.7670 0.068*
C12 0.55722 (17) 0.61347 (11) 0.62987 (11) 0.0631 (4)
H12A 0.6493 0.5925 0.6156 0.076*
H12B 0.4915 0.5411 0.6185 0.076*
C13 0.7612 (2) 0.82022 (17) 0.88950 (12) 0.0781 (5)
H13A 0.8241 0.8931 0.9009 0.117*
H13B 0.8258 0.7583 0.9402 0.117*
H13C 0.6686 0.8368 0.9031 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0883 (6) 0.0761 (6) 0.0598 (5) 0.0042 (5) 0.0360 (4) −0.0189 (4)
F2 0.1137 (8) 0.0920 (7) 0.0538 (5) 0.0326 (6) 0.0448 (5) 0.0010 (4)
O1 0.0689 (6) 0.0515 (5) 0.0607 (6) −0.0175 (4) 0.0017 (4) 0.0058 (4)
N1 0.0477 (5) 0.0406 (5) 0.0503 (5) 0.0007 (4) 0.0025 (4) 0.0013 (4)
C1 0.0445 (5) 0.0567 (7) 0.0384 (5) −0.0074 (5) 0.0147 (4) −0.0065 (4)
C2 0.0545 (7) 0.0820 (9) 0.0331 (5) −0.0143 (6) 0.0091 (5) 0.0061 (5)
C3 0.0429 (6) 0.0752 (9) 0.0575 (7) 0.0000 (6) 0.0069 (5) 0.0263 (7)
C4 0.0511 (6) 0.0641 (8) 0.0702 (8) 0.0153 (6) 0.0243 (6) 0.0146 (6)
C5 0.0520 (6) 0.0601 (7) 0.0439 (6) 0.0077 (5) 0.0214 (5) 0.0032 (5)
C6 0.0380 (5) 0.0456 (5) 0.0350 (5) −0.0021 (4) 0.0107 (4) −0.0002 (4)
C7 0.0495 (6) 0.0409 (5) 0.0364 (5) −0.0022 (4) 0.0093 (4) −0.0035 (4)
C8 0.0447 (5) 0.0528 (7) 0.0501 (6) −0.0060 (5) 0.0110 (5) 0.0037 (5)
C9 0.0463 (6) 0.0418 (6) 0.0578 (7) −0.0074 (5) 0.0175 (5) −0.0042 (5)
C10 0.0443 (5) 0.0553 (7) 0.0446 (6) −0.0016 (5) 0.0130 (4) −0.0039 (5)
C11 0.0523 (6) 0.0473 (6) 0.0547 (7) 0.0042 (5) 0.0094 (5) 0.0074 (5)
C12 0.0613 (7) 0.0417 (6) 0.0580 (7) 0.0084 (5) −0.0009 (6) −0.0013 (5)
C13 0.0974 (12) 0.0762 (10) 0.0507 (8) −0.0106 (9) 0.0224 (8) −0.0110 (7)

Geometric parameters (Å, °)

F1—C1 1.3522 (15) C8—H8A 0.9700
F2—C5 1.3518 (14) C8—H8B 0.9700
O1—C7 1.2192 (15) C9—C10 1.5213 (17)
N1—C7 1.3381 (14) C9—H9A 0.9700
N1—C8 1.4595 (16) C9—H9B 0.9700
N1—C12 1.4671 (15) C10—C13 1.5200 (18)
C1—C2 1.3777 (18) C10—C11 1.5218 (18)
C1—C6 1.3795 (15) C10—H10A 0.9800
C2—C3 1.368 (2) C11—C12 1.5153 (19)
C2—H2A 0.9300 C11—H11A 0.9700
C3—C4 1.379 (2) C11—H11B 0.9700
C3—H3A 0.9300 C12—H12A 0.9700
C4—C5 1.3747 (17) C12—H12B 0.9700
C4—H4A 0.9300 C13—H13A 0.9600
C5—C6 1.3739 (17) C13—H13B 0.9600
C6—C7 1.5094 (15) C13—H13C 0.9600
C8—C9 1.5159 (17)
C7—N1—C8 125.53 (10) C8—C9—C10 111.36 (10)
C7—N1—C12 119.81 (10) C8—C9—H9A 109.4
C8—N1—C12 114.19 (9) C10—C9—H9A 109.4
F1—C1—C2 119.69 (11) C8—C9—H9B 109.4
F1—C1—C6 117.24 (11) C10—C9—H9B 109.4
C2—C1—C6 123.06 (12) H9A—C9—H9B 108.0
C3—C2—C1 118.63 (12) C13—C10—C9 112.18 (12)
C3—C2—H2A 120.7 C13—C10—C11 111.45 (12)
C1—C2—H2A 120.7 C9—C10—C11 109.32 (9)
C2—C3—C4 120.94 (12) C13—C10—H10A 107.9
C2—C3—H3A 119.5 C9—C10—H10A 107.9
C4—C3—H3A 119.5 C11—C10—H10A 107.9
C5—C4—C3 117.94 (13) C12—C11—C10 111.88 (12)
C5—C4—H4A 121.0 C12—C11—H11A 109.2
C3—C4—H4A 121.0 C10—C11—H11A 109.2
F2—C5—C6 117.00 (10) C12—C11—H11B 109.2
F2—C5—C4 119.21 (12) C10—C11—H11B 109.2
C6—C5—C4 123.79 (12) H11A—C11—H11B 107.9
C5—C6—C1 115.62 (10) N1—C12—C11 110.65 (10)
C5—C6—C7 123.88 (10) N1—C12—H12A 109.5
C1—C6—C7 120.14 (10) C11—C12—H12A 109.5
O1—C7—N1 124.08 (11) N1—C12—H12B 109.5
O1—C7—C6 118.17 (10) C11—C12—H12B 109.5
N1—C7—C6 117.69 (10) H12A—C12—H12B 108.1
N1—C8—C9 110.03 (10) C10—C13—H13A 109.5
N1—C8—H8A 109.7 C10—C13—H13B 109.5
C9—C8—H8A 109.7 H13A—C13—H13B 109.5
N1—C8—H8B 109.7 C10—C13—H13C 109.5
C9—C8—H8B 109.7 H13A—C13—H13C 109.5
H8A—C8—H8B 108.2 H13B—C13—H13C 109.5
F1—C1—C2—C3 179.14 (11) C8—N1—C7—C6 13.13 (19)
C6—C1—C2—C3 −0.79 (19) C12—N1—C7—C6 −175.26 (11)
C1—C2—C3—C4 0.9 (2) C5—C6—C7—O1 94.43 (15)
C2—C3—C4—C5 −0.5 (2) C1—C6—C7—O1 −78.49 (15)
C3—C4—C5—F2 179.55 (13) C5—C6—C7—N1 −88.19 (15)
C3—C4—C5—C6 −0.2 (2) C1—C6—C7—N1 98.90 (13)
F2—C5—C6—C1 −179.40 (11) C7—N1—C8—C9 115.22 (13)
C4—C5—C6—C1 0.35 (19) C12—N1—C8—C9 −56.81 (15)
F2—C5—C6—C7 7.40 (18) N1—C8—C9—C10 56.43 (13)
C4—C5—C6—C7 −172.86 (12) C8—C9—C10—C13 −179.72 (12)
F1—C1—C6—C5 −179.77 (10) C8—C9—C10—C11 −55.56 (14)
C2—C1—C6—C5 0.16 (17) C13—C10—C11—C12 178.83 (12)
F1—C1—C6—C7 −6.30 (16) C9—C10—C11—C12 54.25 (14)
C2—C1—C6—C7 173.64 (11) C7—N1—C12—C11 −116.98 (13)
C8—N1—C7—O1 −169.65 (13) C8—N1—C12—C11 55.54 (17)
C12—N1—C7—O1 2.0 (2) C10—C11—C12—N1 −53.71 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O1i 0.93 2.35 3.2646 (18) 168.

Symmetry codes: (i) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2763).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. El Hadri, A., Maldivi, P., Leclerc, G. & Rocher, J.-P. (1995). Bioorg. Med. Chem. 3, 1183–1201. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Waelbroeck, M., Camus, J., Tastenoy, M. & Christophe, J. (1992). Br. J. Pharmacol. 105, 97–102. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033848/is2763sup1.cif

e-67-o2409-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033848/is2763Isup2.hkl

e-67-o2409-Isup2.hkl (168.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033848/is2763Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES