Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2370. doi: 10.1107/S1600536811031722

2,2′-Bis(meth­oxy­meth­oxy)-3-methyl-1,1′-binaphth­yl

Rui M B Carrilho a, Artur R Abreu a, Mariette M Pereira a, V H Rodrigues b,*
PMCID: PMC3200832  PMID: 22058976

Abstract

The title compound, C25H24O4, a meth­oxy­methyl (MOM) bis-protected BINOL derivative containing a methyl substituent in position 3, is a key inter­mediate for the synthesis of a great variety of chiral auxiliaries. The planes of the naphthyl aromatic rings are at an angle of 70.74 (3)°. There are no conventional hydrogen bonds binding the mol­ecules.

Related literature

For the synthesis and catalytic applications of 3 and 3,3′-substituted BINOL derivatives, see: Shi & Wang (2002); Cox et al. (1992); Lingenfelter et al. (1981); Carrilho et al. (2009); Abreu et al. (2010). For the synthesis of the title compound, see: Cox et al. (1992). graphic file with name e-67-o2370-scheme1.jpg

Experimental

Crystal data

  • C25H24O4

  • M r = 388.44

  • Orthorhombic, Inline graphic

  • a = 8.1928 (3) Å

  • b = 14.3757 (5) Å

  • c = 17.1839 (6) Å

  • V = 2023.87 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.36 × 0.28 × 0.1 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.880, T max = 1.000

  • 30280 measured reflections

  • 2046 independent reflections

  • 1790 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.081

  • S = 1.05

  • 2046 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: APEX2 (Bruker–Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031722/hg5065sup1.cif

e-67-o2370-sup1.cif (29KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031722/hg5065Isup2.hkl

e-67-o2370-Isup2.hkl (100.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031722/hg5065Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT/QREN/FEDER PTDC/QUI-QUI/112913/2009). RMBC also thanks the FCT for a PhD grant (SFRH/BD/60499/2009).

supplementary crystallographic information

Comment

The outcome of a given transition-metal catalyzed asymmetric transformation may depend on the steric and electronic properties of a chiral ligand. It is known that the ligand must have the symmetry and appropriate functionalities to discriminate the available space in the vicinity of the metal centre. In this context, 2,2'-binaphthol (BINOL) derivatives have generated particular interest because their modified backbone can influence not only the steric environment around the metal center but also the electronic properties of the oxygen atoms. Therefore, the strategic placement of substituents into the BINOL scaffold may lead to improved catalysts. In the early 1980's, Cram and co-workers synthesized a series of 3,3'-disubstituted BINOLs via Mannich intermediates and, in two diaryl cases, through Grignard cross-coupling reaction of 3,3'-dibromo-BINOL dimethyl ether and arylmagnesium bromides (Lingenfelter et al., 1981). Later in the 1990's, Snieckus and co-workers described an efficient methodology to synthesize 3- and 3,3'-substituted 1,1'-bi-2-naphthols through directed ortho-metalation and Suzuki cross-coupling reactions (Cox et al.,1992).

Within our ongoing project of synthesizing BINOL derivatives (Carrilho et al. 2009, Abreu et al., 2010), we obtained the title compound, C25H24O4, as a precursor of 3-substituted binaphthyl-based phosphorus ligands.

Single crystal X-ray diffraction shows that in the crystal structure of the title compound the planes of the naphthalene aromatic rings are at an angle of 70.74 (3)°. and that there are no conventional hydrogen bonds binding the molecules.

Experimental

The title compound was synthesized from BINOL according to a slightly modified two step procedure, based on those previously reported (Shi & Wang, 2002, Cox et al., 1992). First, under a nitrogen atmosphere, 1,1'-binaphthol (6.0 g, 21 mmol) was added to a suspension of NaH (3.4 g, 84 mmol) in anhydrous THF (60 ml) at 0°C, with stirring. This solution was stirred for 15 min, and then methoxymethyl chloride (4.0 ml, 53 mmol) was slowly added. The mixture was allowed to warm to room temperature and stirred for 5 h. After the standard procedures of quenching, washing and drying the organic layers, the solvent was removed and the compound 2,2'-bis(methoxymethoxy)-1,1'-binaphthyl was recrystallized from toluene/n-hexane. In the second step of the synthesis, under a nitrogen atmosphere, n-BuLi (1.6 M in hexene, 11.3 ml, 18 mmol) was added to a solution of 2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (5.5 g, 15 mmol) in anhydrous THF (90 ml), at room temperature. The mixture was stirred for 4 h, which produced a grey suspension. After the mixture was cooled to 0°C, CH3I (1.2 ml, 19 mmol) was added. The reaction was allowed to warm to room temperature and stirred for 5 h. After quenching by a saturated solution of NH4Cl (50 ml), the aqueous layer was extracted with ethyl acetate (2× 50 ml) and the organic layers were combined and dried over Na2SO4. After removal of the solvent, the residue was purified by column chromatography on silica gel, using as eluent a mixture of n-hexane/ethyl acetate (10:1), which rendered the title compound (4.1 g, 70%). Crystals suitable for single-crystal X-ray diffraction were obtained after dissolution of the title compound (5 mg ml-1) in a mixture of n-hexane/ethyl acetate (10:1), and left open to air, at room temperature, for 36 h. The NMR data we obtained is in agreement with published values (Cox et al., 1992).

1H NMR (CDCl3, TMS, 400 MHz) δ 2.58 (s, 3H, CH3), 2.89 (s, 3H, OCH3), 3.16 (s, 3H, OCH3), 4.55 (d, J=5.6 Hz, 1H, CH2), 4.64 (d, J=5.6 Hz, 1H, CH2), 5.01 (d, J=6.8 Hz, 1H, CH2), 5.12 (d, J=7.2 Hz, 1H, CH2), 7.12–7.36 (m, 6H, ArH), 7.57 (d, J=8.8 Hz, 1H, ArH), 7.80 (d, J=8.8 Hz, 2H, ArH), 7.86 (d, J=8.0 Hz, 1H, ArH), 7.95 (d, J=9.2 Hz, 1H, ArH). 13C NMR (CDCl3, TMS, 100 MHz) δ 17.9 (CH3), 55.9 (OCH3), 56.5 (OCH3), 95.0 (OCH2), 98.7 (OCH2), 116.7, 121.2, 124.1, 124.8, 125.1, 125.3, 125.7, 125.7, 126.6, 127.1, 127.8, 129.5, 129.7, 131.1, 131.6, 132.8, 134.1, 152.8, 153.1 (ArC).

Refinement

All H atoms were were placed at idealized positions and refined as riding [C—H=0.93 (aromatic C), 0.97Å (CH2) and 0.96Å (CH3), Uiso(H)=1.2Ueq(C)].

The refined model structure is non-centrosymmetric with only atoms which are poor anomalous scatterers for the wavelength used, therefore Friedel pairs were merged before the final refinement. The meaningless Flack parameter obtained without merging of Friedel pairs was -0.3 (11). Absolute structure could not be reliably determined.

Figures

Fig. 1.

Fig. 1.

ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.

Crystal data

C25H24O4 F(000) = 824
Mr = 388.44 Dx = 1.275 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 6636 reflections
a = 8.1928 (3) Å θ = 5.7–47.5°
b = 14.3757 (5) Å µ = 0.09 mm1
c = 17.1839 (6) Å T = 293 K
V = 2023.87 (12) Å3 Prismatic, translucent colourless
Z = 4 0.36 × 0.28 × 0.1 mm

Data collection

Bruker APEXII diffractometer 2046 independent reflections
Radiation source: fine-focus sealed tube 1790 reflections with I > 2σ(I)
graphite Rint = 0.050
φ and ω scans θmax = 25.0°, θmin = 3.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −9→9
Tmin = 0.880, Tmax = 1.000 k = −17→17
30280 measured reflections l = −20→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3304P] where P = (Fo2 + 2Fc2)/3
2046 reflections (Δ/σ)max < 0.001
265 parameters Δρmax = 0.09 e Å3
0 restraints Δρmin = −0.11 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7073 (2) 0.69011 (14) 0.84338 (12) 0.0369 (5)
C2 0.6711 (2) 0.61570 (15) 0.89082 (13) 0.0405 (5)
O1 0.73545 (19) 0.52875 (10) 0.87448 (9) 0.0491 (4)
C11 0.6355 (3) 0.47209 (18) 0.82486 (19) 0.0677 (7)
H11A 0.5365 0.4542 0.8519 0.081*
H11B 0.6053 0.5066 0.7786 0.081*
O2 0.7235 (3) 0.39398 (12) 0.80452 (14) 0.0821 (6)
C12 0.8311 (5) 0.4088 (2) 0.7413 (2) 0.0951 (11)
H12A 0.9070 0.4572 0.7544 0.143*
H12B 0.7695 0.4268 0.6962 0.143*
H12C 0.8896 0.3524 0.7305 0.143*
C3 0.5780 (3) 0.62609 (16) 0.96027 (12) 0.0443 (5)
C13 0.5472 (4) 0.54406 (19) 1.01259 (16) 0.0659 (7)
H13A 0.4833 0.5635 1.0565 0.099*
H13B 0.6495 0.5194 1.0304 0.099*
H13C 0.4892 0.4969 0.9843 0.099*
C4 0.5214 (3) 0.71246 (16) 0.97842 (12) 0.0459 (5)
H4 0.4591 0.7199 1.0232 0.055*
C5 0.5535 (3) 0.79062 (15) 0.93211 (12) 0.0415 (5)
C6 0.4929 (3) 0.88020 (17) 0.95132 (14) 0.0549 (6)
H6 0.4272 0.8875 0.9950 0.066*
C7 0.5291 (4) 0.95506 (18) 0.90699 (15) 0.0628 (7)
H7 0.4878 1.0132 0.9203 0.075*
C8 0.6284 (3) 0.94558 (16) 0.84124 (15) 0.0568 (6)
H8 0.6545 0.9977 0.8117 0.068*
C9 0.6871 (3) 0.86076 (15) 0.82018 (13) 0.0466 (5)
H9 0.7526 0.8556 0.7762 0.056*
C10 0.6502 (2) 0.78014 (14) 0.86413 (11) 0.0382 (5)
C1A 0.8059 (3) 0.67661 (14) 0.77123 (12) 0.0387 (5)
C2A 0.9703 (3) 0.65712 (15) 0.77629 (12) 0.0434 (5)
O1A 1.03316 (19) 0.65245 (13) 0.85048 (9) 0.0558 (5)
C11A 1.1991 (3) 0.6266 (2) 0.86092 (17) 0.0720 (8)
H11C 1.2675 0.6680 0.8306 0.086*
H11D 1.2280 0.6345 0.9153 0.086*
O2A 1.2315 (3) 0.53575 (18) 0.83918 (12) 0.0843 (7)
C12A 1.1601 (5) 0.4669 (3) 0.8900 (2) 0.0956 (11)
H12D 1.0433 0.4700 0.8865 0.143*
H12E 1.1933 0.4788 0.9427 0.143*
H12F 1.1964 0.4061 0.8747 0.143*
C3A 1.0660 (3) 0.64502 (17) 0.70922 (14) 0.0515 (6)
H3A 1.1769 0.6324 0.7138 0.062*
C4A 0.9966 (3) 0.65178 (15) 0.63747 (14) 0.0501 (6)
H4A 1.0611 0.6431 0.5935 0.060*
C5A 0.8289 (3) 0.67162 (14) 0.62827 (12) 0.0430 (5)
C6A 0.7546 (3) 0.67856 (15) 0.55421 (13) 0.0504 (6)
H6A 0.8170 0.6687 0.5098 0.061*
C7A 0.5940 (4) 0.69931 (17) 0.54687 (13) 0.0559 (6)
H7A 0.5472 0.7036 0.4977 0.067*
C8A 0.4987 (3) 0.71424 (16) 0.61322 (13) 0.0532 (6)
H8A 0.3890 0.7296 0.6079 0.064*
C9A 0.5650 (3) 0.70648 (16) 0.68543 (13) 0.0470 (5)
H9A 0.4992 0.7155 0.7289 0.056*
C10A 0.7327 (3) 0.68483 (13) 0.69579 (11) 0.0390 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0289 (10) 0.0477 (11) 0.0339 (10) 0.0011 (9) −0.0006 (9) −0.0009 (8)
C2 0.0300 (10) 0.0492 (12) 0.0424 (11) 0.0032 (9) −0.0034 (9) 0.0026 (9)
O1 0.0449 (8) 0.0436 (8) 0.0588 (9) 0.0070 (7) −0.0041 (8) 0.0015 (7)
C11 0.0478 (14) 0.0565 (14) 0.099 (2) 0.0006 (12) 0.0053 (15) −0.0138 (15)
O2 0.0777 (14) 0.0468 (9) 0.1218 (17) 0.0008 (10) 0.0153 (13) −0.0097 (11)
C12 0.087 (2) 0.095 (2) 0.104 (3) 0.006 (2) 0.020 (2) −0.026 (2)
C3 0.0374 (11) 0.0582 (13) 0.0371 (11) −0.0009 (11) −0.0004 (9) 0.0092 (10)
C13 0.0686 (17) 0.0701 (16) 0.0589 (14) −0.0037 (15) 0.0040 (14) 0.0218 (13)
C4 0.0381 (12) 0.0654 (14) 0.0341 (11) 0.0012 (11) 0.0035 (10) 0.0004 (10)
C5 0.0346 (11) 0.0536 (12) 0.0364 (11) 0.0024 (10) −0.0002 (9) −0.0019 (9)
C6 0.0525 (14) 0.0616 (14) 0.0504 (13) 0.0105 (13) 0.0064 (12) −0.0105 (11)
C7 0.0711 (18) 0.0503 (13) 0.0670 (16) 0.0112 (14) 0.0031 (15) −0.0087 (12)
C8 0.0632 (16) 0.0457 (13) 0.0614 (14) −0.0023 (12) −0.0015 (14) 0.0038 (11)
C9 0.0456 (13) 0.0494 (12) 0.0448 (12) −0.0019 (11) 0.0045 (11) 0.0022 (9)
C10 0.0314 (10) 0.0468 (11) 0.0366 (10) −0.0002 (9) −0.0020 (9) −0.0007 (9)
C1A 0.0355 (11) 0.0413 (10) 0.0393 (11) −0.0011 (9) 0.0053 (9) −0.0023 (9)
C2A 0.0347 (11) 0.0528 (12) 0.0427 (12) 0.0004 (10) 0.0013 (10) −0.0056 (10)
O1A 0.0343 (8) 0.0873 (12) 0.0457 (9) 0.0087 (8) −0.0035 (7) −0.0110 (8)
C11A 0.0332 (13) 0.117 (2) 0.0653 (17) 0.0078 (15) −0.0092 (13) −0.0093 (17)
O2A 0.0643 (12) 0.1207 (18) 0.0678 (12) 0.0428 (13) 0.0019 (11) −0.0101 (13)
C12A 0.095 (3) 0.109 (3) 0.083 (2) 0.032 (2) 0.003 (2) 0.003 (2)
C3A 0.0365 (12) 0.0641 (14) 0.0541 (14) 0.0042 (11) 0.0086 (12) −0.0077 (11)
C4A 0.0505 (14) 0.0532 (13) 0.0465 (13) 0.0024 (11) 0.0157 (11) −0.0033 (10)
C5A 0.0496 (13) 0.0383 (10) 0.0412 (12) −0.0012 (10) 0.0076 (10) 0.0015 (9)
C6A 0.0668 (16) 0.0452 (12) 0.0394 (11) 0.0001 (12) 0.0096 (12) 0.0042 (9)
C7A 0.0724 (18) 0.0548 (14) 0.0405 (12) 0.0009 (13) −0.0085 (13) 0.0079 (10)
C8A 0.0502 (13) 0.0586 (13) 0.0508 (13) 0.0054 (12) −0.0053 (12) 0.0074 (11)
C9A 0.0438 (12) 0.0550 (13) 0.0422 (12) 0.0019 (11) 0.0008 (10) 0.0017 (10)
C10A 0.0411 (11) 0.0384 (10) 0.0375 (11) −0.0014 (9) 0.0038 (9) 0.0009 (8)

Geometric parameters (Å, °)

C1—C2 1.377 (3) C9—C10 1.416 (3)
C1—C10 1.422 (3) C9—H9 0.9300
C1—C1A 1.493 (3) C1A—C2A 1.379 (3)
C2—O1 1.385 (2) C1A—C10A 1.433 (3)
C2—C3 1.424 (3) C2A—O1A 1.376 (3)
O1—C11 1.435 (3) C2A—C3A 1.405 (3)
C11—O2 1.379 (3) O1A—C11A 1.421 (3)
C11—H11A 0.9700 C11A—O2A 1.384 (4)
C11—H11B 0.9700 C11A—H11C 0.9700
O2—C12 1.415 (4) C11A—H11D 0.9700
C12—H12A 0.9600 O2A—C12A 1.444 (4)
C12—H12B 0.9600 C12A—H12D 0.9600
C12—H12C 0.9600 C12A—H12E 0.9600
C3—C4 1.362 (3) C12A—H12F 0.9600
C3—C13 1.504 (3) C3A—C4A 1.361 (3)
C13—H13A 0.9600 C3A—H3A 0.9300
C13—H13B 0.9600 C4A—C5A 1.412 (3)
C13—H13C 0.9600 C4A—H4A 0.9300
C4—C5 1.402 (3) C5A—C6A 1.414 (3)
C4—H4 0.9300 C5A—C10A 1.415 (3)
C5—C10 1.419 (3) C6A—C7A 1.355 (4)
C5—C6 1.419 (3) C6A—H6A 0.9300
C6—C7 1.352 (4) C7A—C8A 1.399 (4)
C6—H6 0.9300 C7A—H7A 0.9300
C7—C8 1.399 (4) C8A—C9A 1.359 (3)
C7—H7 0.9300 C8A—H8A 0.9300
C8—C9 1.360 (3) C9A—C10A 1.420 (3)
C8—H8 0.9300 C9A—H9A 0.9300
C2—C1—C10 119.19 (18) C9—C10—C5 118.11 (19)
C2—C1—C1A 120.49 (18) C9—C10—C1 122.76 (18)
C10—C1—C1A 120.32 (18) C5—C10—C1 119.12 (18)
C1—C2—O1 119.92 (18) C2A—C1A—C10A 118.88 (19)
C1—C2—C3 122.00 (19) C2A—C1A—C1 120.19 (19)
O1—C2—C3 117.93 (18) C10A—C1A—C1 120.93 (17)
C2—O1—C11 114.54 (17) O1A—C2A—C1A 115.70 (19)
O2—C11—O1 108.3 (2) O1A—C2A—C3A 123.05 (19)
O2—C11—H11A 110.0 C1A—C2A—C3A 121.2 (2)
O1—C11—H11A 110.0 C2A—O1A—C11A 119.18 (19)
O2—C11—H11B 110.0 O2A—C11A—O1A 113.3 (2)
O1—C11—H11B 110.0 O2A—C11A—H11C 108.9
H11A—C11—H11B 108.4 O1A—C11A—H11C 108.9
C11—O2—C12 113.4 (2) O2A—C11A—H11D 108.9
O2—C12—H12A 109.5 O1A—C11A—H11D 108.9
O2—C12—H12B 109.5 H11C—C11A—H11D 107.7
H12A—C12—H12B 109.5 C11A—O2A—C12A 114.0 (2)
O2—C12—H12C 109.5 O2A—C12A—H12D 109.5
H12A—C12—H12C 109.5 O2A—C12A—H12E 109.5
H12B—C12—H12C 109.5 H12D—C12A—H12E 109.5
C4—C3—C2 118.03 (19) O2A—C12A—H12F 109.5
C4—C3—C13 121.4 (2) H12D—C12A—H12F 109.5
C2—C3—C13 120.6 (2) H12E—C12A—H12F 109.5
C3—C13—H13A 109.5 C4A—C3A—C2A 120.1 (2)
C3—C13—H13B 109.5 C4A—C3A—H3A 120.0
H13A—C13—H13B 109.5 C2A—C3A—H3A 120.0
C3—C13—H13C 109.5 C3A—C4A—C5A 121.5 (2)
H13A—C13—H13C 109.5 C3A—C4A—H4A 119.3
H13B—C13—H13C 109.5 C5A—C4A—H4A 119.3
C3—C4—C5 122.5 (2) C4A—C5A—C6A 122.3 (2)
C3—C4—H4 118.8 C4A—C5A—C10A 118.5 (2)
C5—C4—H4 118.8 C6A—C5A—C10A 119.3 (2)
C4—C5—C10 119.15 (19) C7A—C6A—C5A 121.1 (2)
C4—C5—C6 122.0 (2) C7A—C6A—H6A 119.4
C10—C5—C6 118.9 (2) C5A—C6A—H6A 119.4
C7—C6—C5 121.0 (2) C6A—C7A—C8A 120.0 (2)
C7—C6—H6 119.5 C6A—C7A—H7A 120.0
C5—C6—H6 119.5 C8A—C7A—H7A 120.0
C6—C7—C8 120.4 (2) C9A—C8A—C7A 120.6 (2)
C6—C7—H7 119.8 C9A—C8A—H8A 119.7
C8—C7—H7 119.8 C7A—C8A—H8A 119.7
C9—C8—C7 120.5 (2) C8A—C9A—C10A 121.3 (2)
C9—C8—H8 119.7 C8A—C9A—H9A 119.4
C7—C8—H8 119.7 C10A—C9A—H9A 119.4
C8—C9—C10 121.1 (2) C5A—C10A—C9A 117.73 (19)
C8—C9—H9 119.5 C5A—C10A—C1A 119.81 (19)
C10—C9—H9 119.5 C9A—C10A—C1A 122.45 (19)
C10—C1—C2—O1 −175.41 (18) C10—C1—C1A—C2A 108.5 (2)
C1A—C1—C2—O1 4.3 (3) C2—C1—C1A—C10A 109.6 (2)
C10—C1—C2—C3 0.0 (3) C10—C1—C1A—C10A −70.6 (3)
C1A—C1—C2—C3 179.70 (19) C10A—C1A—C2A—O1A 178.49 (18)
C1—C2—O1—C11 −90.4 (2) C1—C1A—C2A—O1A −0.7 (3)
C3—C2—O1—C11 94.1 (2) C10A—C1A—C2A—C3A −0.2 (3)
C2—O1—C11—O2 171.5 (2) C1—C1A—C2A—C3A −179.4 (2)
O1—C11—O2—C12 −82.8 (3) C1A—C2A—O1A—C11A 175.8 (2)
C1—C2—C3—C4 1.4 (3) C3A—C2A—O1A—C11A −5.5 (4)
O1—C2—C3—C4 176.8 (2) C2A—O1A—C11A—O2A −66.0 (3)
C1—C2—C3—C13 −177.2 (2) O1A—C11A—O2A—C12A −69.6 (3)
O1—C2—C3—C13 −1.7 (3) O1A—C2A—C3A—C4A −179.1 (2)
C2—C3—C4—C5 −0.9 (3) C1A—C2A—C3A—C4A −0.5 (4)
C13—C3—C4—C5 177.6 (2) C2A—C3A—C4A—C5A 0.5 (4)
C3—C4—C5—C10 −0.8 (3) C3A—C4A—C5A—C6A −179.8 (2)
C3—C4—C5—C6 179.5 (2) C3A—C4A—C5A—C10A 0.2 (3)
C4—C5—C6—C7 178.1 (2) C4A—C5A—C6A—C7A −178.8 (2)
C10—C5—C6—C7 −1.6 (4) C10A—C5A—C6A—C7A 1.2 (3)
C5—C6—C7—C8 −0.4 (4) C5A—C6A—C7A—C8A 0.0 (4)
C6—C7—C8—C9 1.3 (4) C6A—C7A—C8A—C9A −1.2 (4)
C7—C8—C9—C10 −0.3 (4) C7A—C8A—C9A—C10A 1.2 (4)
C8—C9—C10—C5 −1.6 (3) C4A—C5A—C10A—C9A 178.8 (2)
C8—C9—C10—C1 179.1 (2) C6A—C5A—C10A—C9A −1.2 (3)
C4—C5—C10—C9 −177.2 (2) C4A—C5A—C10A—C1A −0.9 (3)
C6—C5—C10—C9 2.5 (3) C6A—C5A—C10A—C1A 179.07 (19)
C4—C5—C10—C1 2.1 (3) C8A—C9A—C10A—C5A 0.0 (3)
C6—C5—C10—C1 −178.2 (2) C8A—C9A—C10A—C1A 179.7 (2)
C2—C1—C10—C9 177.6 (2) C2A—C1A—C10A—C5A 0.9 (3)
C1A—C1—C10—C9 −2.2 (3) C1—C1A—C10A—C5A −179.94 (19)
C2—C1—C10—C5 −1.7 (3) C2A—C1A—C10A—C9A −178.8 (2)
C1A—C1—C10—C5 178.57 (18) C1—C1A—C10A—C9A 0.4 (3)
C2—C1—C1A—C2A −71.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5065).

References

  1. Abreu, A. R., Bayón, J. C. & Pereira, M. M. (2010). Tetrahedron, 66, 743–749.
  2. Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker–Nonius (2004). APEX2 Bruker–Nonius BV, Delft, The Netherlands.
  4. Carrilho, R. M. B., Abreu, A. R., Petöcz, G., Bayòn, J. C., Moreno, M. J. S. M., Kollár, L. & Pereira, M. M. (2009). Chem. Lett. 8, 844–845.
  5. Cox, P. J., Wang, W. & Snieckus, V. (1992). Tetrahedron Lett. 33, 2253–2256.
  6. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  7. Lingenfelter, D. S., Helgeson, R. C. & Cram, D. J. (1981). J. Org. Chem. 46, 393–406.
  8. Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shi, M. & Wang, C.-J. (2002). Tetrahedron Asymmetry, 13, 2161–2166.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031722/hg5065sup1.cif

e-67-o2370-sup1.cif (29KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031722/hg5065Isup2.hkl

e-67-o2370-Isup2.hkl (100.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031722/hg5065Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES